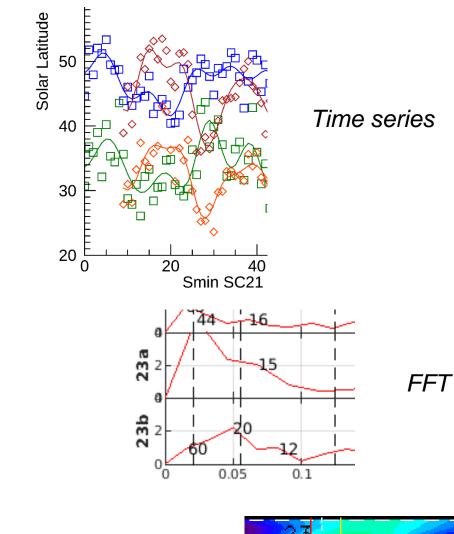
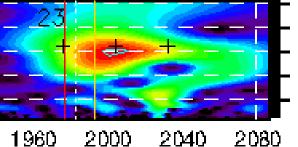
# FFT and Wavelet Tools for Harmonic Analyses

by Barbara Emery, HAO/NCAR and IDL or MatLab and Torrence and Compo (1998)

For WHPI Tools Workshop Thursday January 21, 2021



Morlet wavelet



Compute the Fourier transform of the signal.

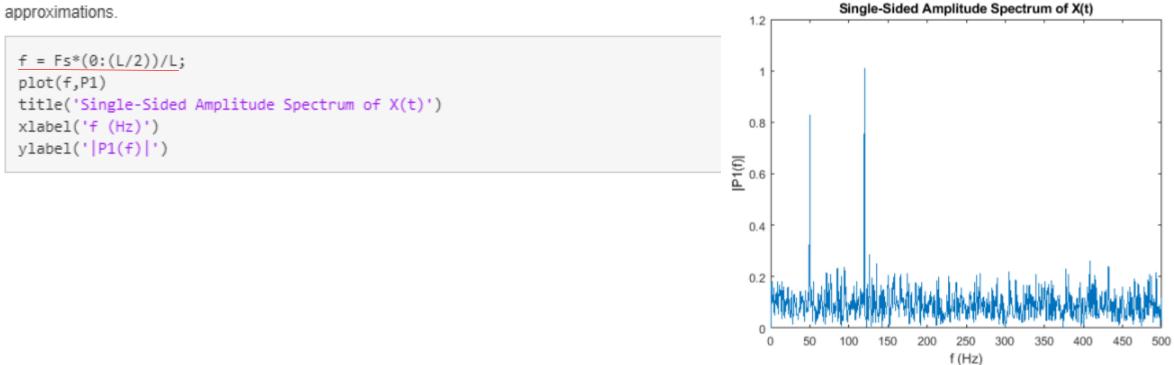
### 'Noisy Signal' Example in matlab for fft documentation

Y = fft(X);

Compute the two-sided spectrum P2. Then compute the single-sided spectrum P1 based on P2 and the evenvalued signal length L.

P2 = abs(Y/L); P1 = P2(1:L/2+1); P1(2:end-1) = 2\*P1(2:end-1);

Define the frequency domain f and plot the single-sided amplitude spectrum P1. The amplitudes are not exactly at 0.7 and 1, as expected, because of the added noise. On average, longer signals produce better frequency approximations.



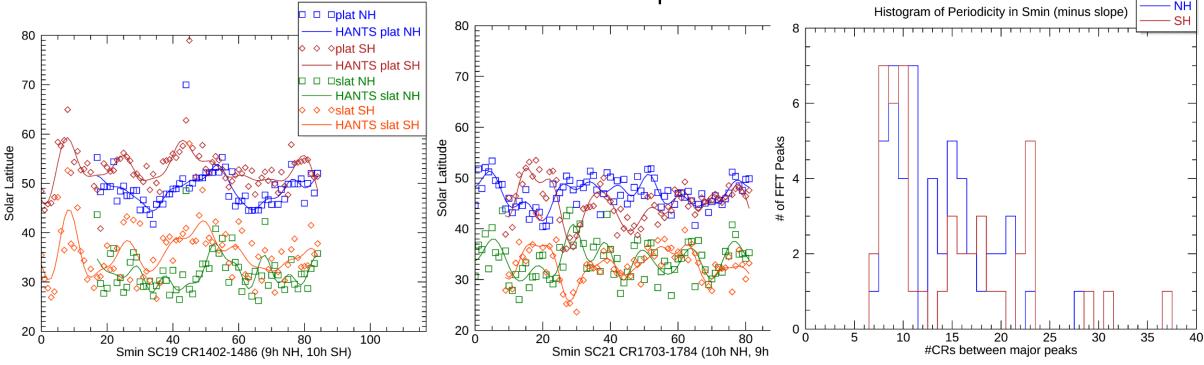
# Fast Fourier Transform (FFT)

- Fast Fourier Transform (FFT) is a direct way to find periodicities in data.
- Often have data as a function of evenly spaced time in the geosciences, or can have data as a function of lat/lon (tides etc). Interpolate missing data.
- Assume evenly spaced time Δt. Frequency is inverse of time f=1/t. Because time is evenly spaced, frequency is not (unlike evenly spaced sampling frequency and uneven periods 1/f).
- Highest frequency is Nyquist frequency ½\*(1/Δt) with shortest possible period (or resolvable scale) of 2\*Δt. Periods increase with multiple powers of 2.
- Longest period is L, the number of points in the sample (lowest f(2)=1/L, except for f(1)=0 where the amplitude is the mean of the sample)
- Number of frequencies is  $\underline{nf=L/2+1}$  (L even), or nf=(L+1)/2+1 (L odd) where  $\underline{f(1:nf)=(1/\Delta t)^*(0:nf-1)/L}$  so f(1)=0 or zero frequency for the mean
- Find Y Discrete Fourier Transform (DFT) of X with FFT (Y=fft(X(n1:n2), L=n2n1+1) where X is with any slopes removed for zero baseline
- <u>p2=abs(Y/L)</u>, real amplitude is p1=p2, <u>p1(2:nf-1)=2\*p1(2:nf-1)</u>, <u>sum(amps)=sum[amp(2:nf-1)]</u> (avoid mean amplitude p1(1) at f(1)=0)

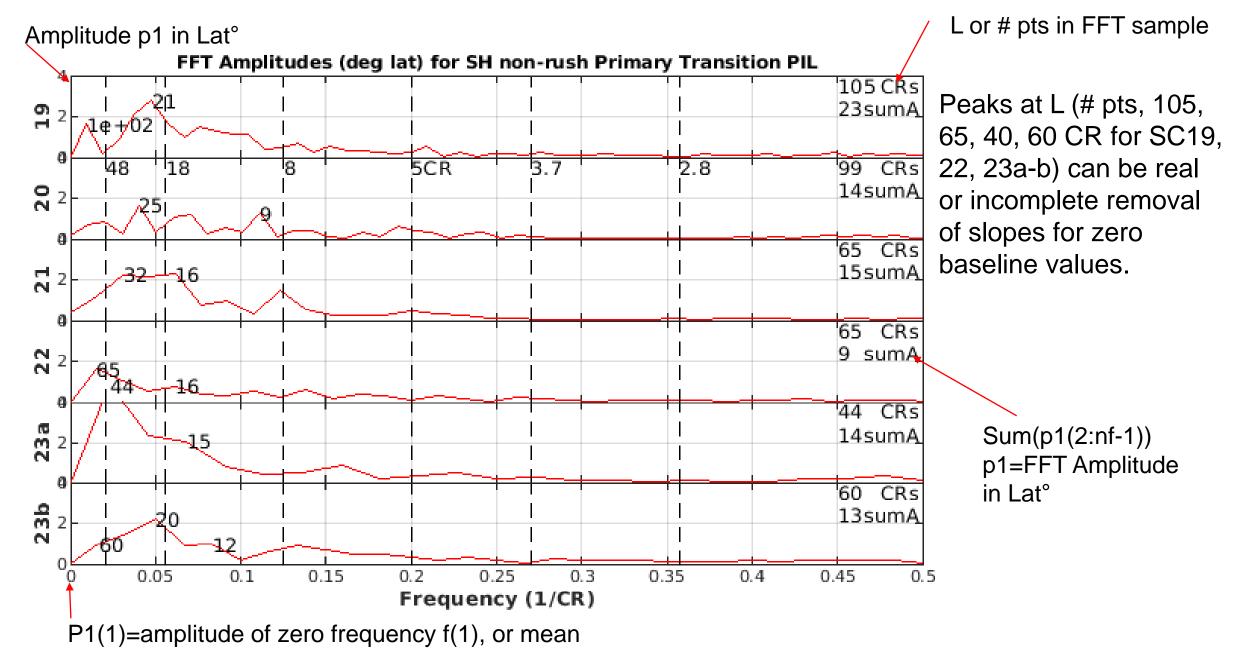
## Fast Fourier Transform (FFT) from IDL for Lats of PILs (NLs)

-ts\_hants.pro (IDL 8.7 > sswidl) finds amplitudes and phases of several frequencies at once. Tom Kuchar of Boston College got me the code and examples running it. Thanks, Tom! -ts=Time Series, hants=Harmonic ANalysis of Time Series from NRL creates a time series based on harmonic analysis of time series data using only 4 frequencies in default, which I increased to get a minimum period of ~8CR. Work with zero baseline data (slopes removed).

- -The zero harmonic is the mean, the first harmonic is L (number of points in the time series)
- -There were some errors in ts\_hants.pro depending on if the vector had even or odd # pts (L). -I also could not figure out how to use the phase to get my own time series estimate if I wanted to delete some of the harmonics that had small amplitudes.

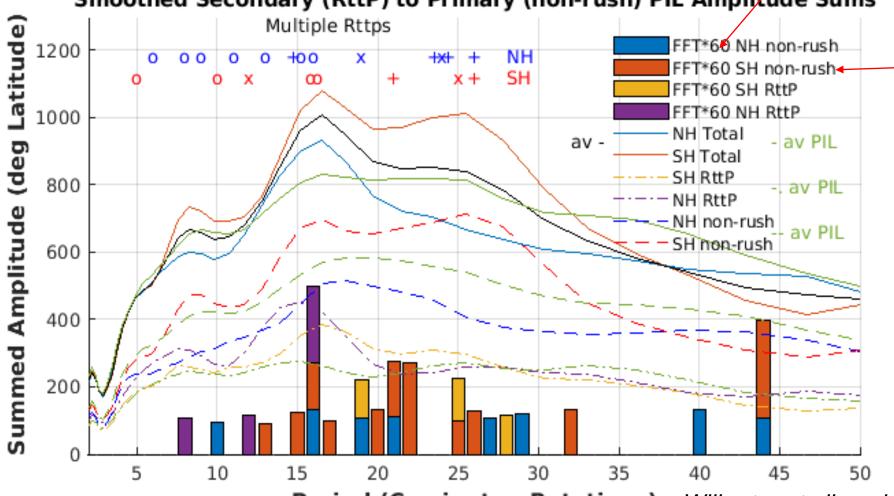


### Matlab FFT for Smax to Smin PCF (neutral line closest to pole) SH Latitude Variations



### Bar Plot of FFT summed amplitudes >1.5° as a function of CR (1/freq to nearest integer CR) 11 FFT segm

11 FFT segments, 5 Rush-to-the-Poles (RttP), 6 non-Rush for 732 Carrington maps or 732/11=66.5 (~60).

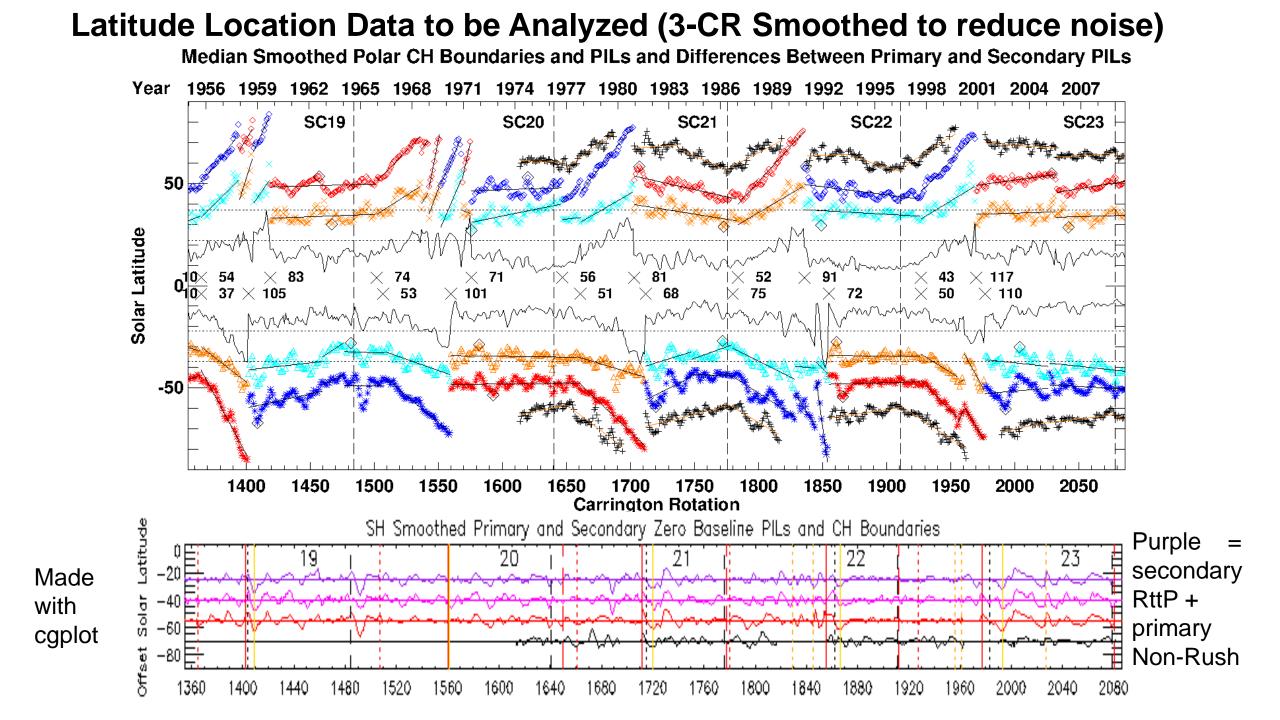


#### Smoothed Secondary (RttP) to Primary (non-rush) PIL Amplitude Sums

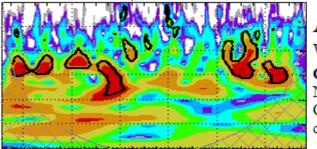
Should multiply each FFT segment by L, the number of CRs in each before adding the summed amplitudes over 1.5° latitude for this plot. Roughly, 37% of the maps are RttP, so ~54 times 5 RttPs and ~77 times 6 non-Rush and list it as FFT\*L instead of FFT\*60.

**Previous Plot of Amplitudes** 

**Period (Carrington Rotations)** Will return to line plots for wavelet amplitudes.



### https://paos.colorado.edu/research/wavelets



### A Practical Guide to Wavelet Analysis

With significance and confidence testing

Christopher Torrence National Snow and Ice Data Center CIRES, CU Boulder chris.torrence[AT]colorado[DOT]edu Gilbert P. Compo CIRES, University of Colorado & Physical Sciences Division, NOAA ESRL Boulder, Colorado compo[AT]colorado[DOT]edu

| Wavelet Analysis & Monte Carlo                 | wavelet.pro<br>cgloadct.pro | omni2_2018304_2020257   |
|------------------------------------------------|-----------------------------|-------------------------|
| References & Web Sites                         | cgplot.pro                  | plot_psd_amp_Vsw_ap.pro |
| Interactive Wavelet Plot (no longer available) | cgcontour.pro               | ampwhpi.pro             |

Software for Fortran, IDL, Matlab, and Python

Frequently Asked Questions (FAQ)

I used IDL because I borrowed code from Federico Gasperini of ASTRA. (Thank you SO MUCH, Federico!)

Article: "A Practical Guide to Wavelet Analysis", C. Torrence and G. P. Compo, 1998\*.

Abstract & List of Topics Additional information & Errata Google Scholar Citations

Wavelet Coherency and Phase

### **Morlet Wavelets**

- Morlet period is similar to the FFT period (=1.03\*Morlet period)
- Smallest resolvable scale (period T) is  $2\Delta t$  (Nyquist frequency f=1/T, like FFT) (s0 eq 9)
- Scales increase as powers of 2 (like FFT)
- Fill in missing data (can be zeroes for zero baseline values, or linearly interpolate first)
- Recommend padding zero baseline array with zeroes to the nearest multiple of 2 (to avoid edge effects at the beginning or the end of the wavelets)
- Zero baseline values remove the mean and significant slopes (like Rush-to-the-Poles)
- Increasing period has increasing intervals between each period (like FFT, multiples of 2) -(For  $\Delta t=1CR$ , periods from 2-~66CR had intervals of 0.2CR to 4.9CR or factor of 25)
- Power Spectral Density (PSD) estimates the "true" power underneath the power spectrum curve, but can be "biased" for sharp peaks.
- Amplitude = SQRT[PSD/( $2\pi \Delta T$ )], normalization of  $2\pi$  from eq 6 for amplitude ~FFT It is convenient to write the scales as fractional powc. Normalization

ers of two:

$$s_j = s_0 2^{j\delta j}, \quad j = 0, 1, ..., J$$
 (9)

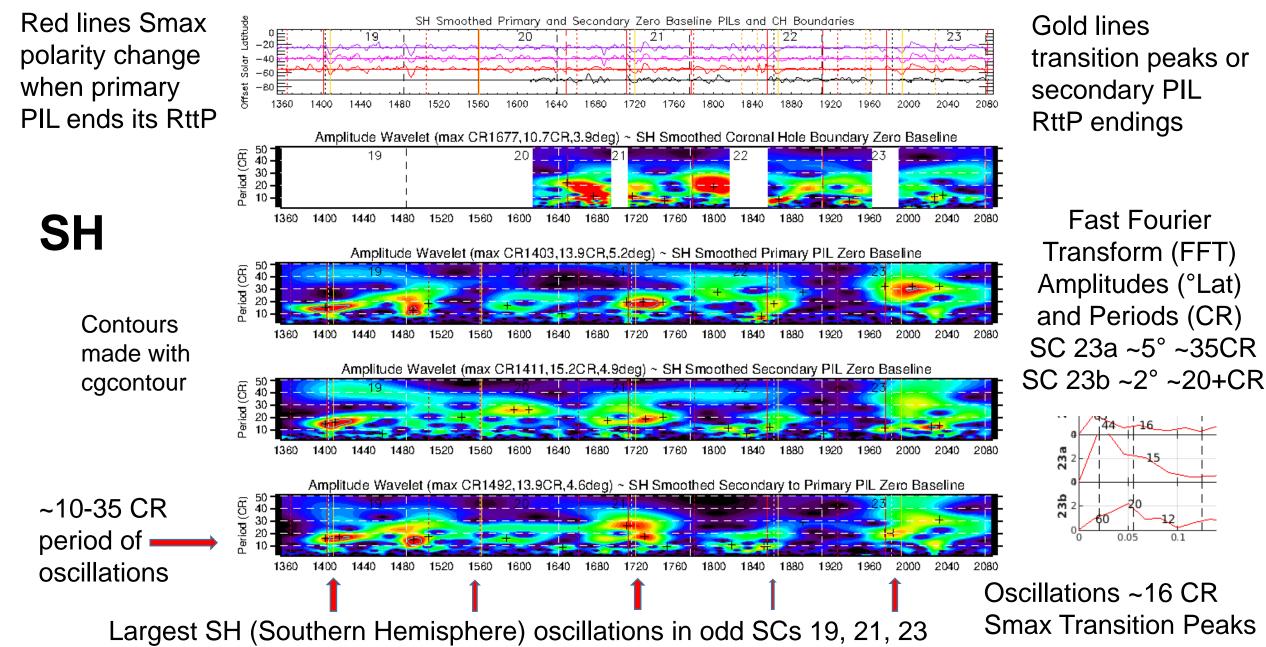
$$J = \delta j^{-1} \log_2 \left( N \delta t / s_0 \right), \tag{10}$$

where  $s_0$  is the smallest resolvable scale and J determines the largest scale. The so should be chosen so that the equivalent Fourier period (see section 3h) is approximately  $2\delta t$ . The choice of a sufficiently small  $\delta j$ 

To ensure that the wavelet transforms (4) at each scale s are directly comparable to each other and to the transforms of other time series, the wavelet function at each scale s is normalized to have unit energy:

$$\hat{\psi}(s\omega_k) = \left(\frac{2\pi s}{\delta t}\right)^{1/2} \hat{\psi}_0(s\omega_k). \tag{6}$$

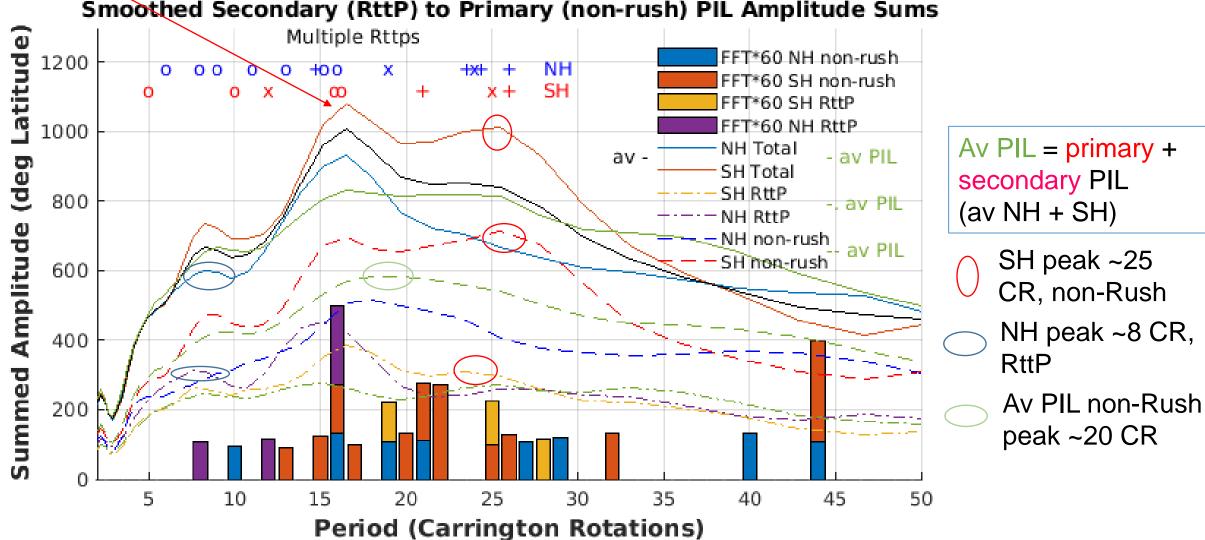
# ~16 CR Oscillations from Solar Maximum Transition Peaks



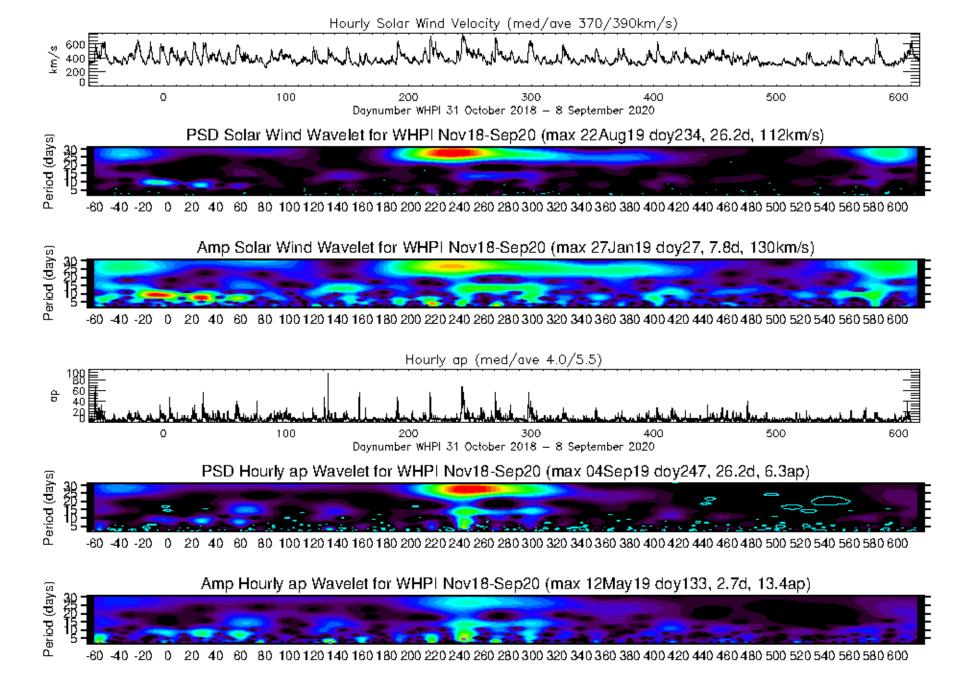
### Line Plot of Morlet wavelet summed amplitudes >95% significance level as a function of CR



Purple curve from previous slide



### Smoothed Secondary (RttP) to Primary (non-rush) PIL Amplitude Sums



WHPI Examples for Hourly Solar Wind Velocity and Hourly ap magnetic index (linearized Kp)

-Linearly interpolated missing Vsw values (no missing ap)

-Removed median for Vsw, but not for ap

-PSD peaks ~26 days

-Amplitude peaks lower in period because of 1/sqrt(ΔT) (~5x from 2-66CR) 8-day Vsw, 3-day ap