Introduction to the RH Radiative Transfer Code

Han Uitenbroek
National Solar Observatory/Sacramento Peak
Sunspot, USA

Radiative Transfer with RH, NAOC Beijing, Nov 30, 2015
Two available Non-LTE Radiative transfer codes

MULTI3D

- Carlsson, M. 1986, Uppsala Astronomical Report, No. 33
- Leenaarts, J., Carlsson, M. 2009, ASPC 415, 87
Two available Non-LTE Radiative transfer codes

MULTI3D

- Carlsson, M. 1986, Uppsala Astronomical Report, No. 33
- Leenaarts, J., Carlsson, M. 2009, ASPC 415, 87

RH

Two available Non-LTE Radiative transfer codes

MULTI3D
- Carlsson, M. 1986, Uppsala Astronomical Report, No. 33
- Leenaarts, J., Carlsson, M. 2009, ASPC 415, 87

RH
The MULTI3D code

- Well tested
- One- and three-dimensional Cartesian geometry
- Formal solution with short characteristics
- Domain decomposition with MPI parallelization for large clusters
- Partial frequency redistribution with scheme developed for RH transfer code
The RH code

- One-, Two-, Three-dimensional Cartesian, and spherically symmetric geometry
- Short characteristics
- Partial frequency redistribution multi-level atoms
- Polarization, Zeeman effect in atomic and molecular lines, scattering continuum
- Molecular lines, polarization, Non-LTE
- Multiple species in Non-LTE simultaneously
- Parallelization over wavelengths for shared memory machines
When density is high and collisions are frequent enough, population numbers are determined by local conditions, and given by the Saha-Boltzmann relations at the kinetic temperature of the gas.
When is Non-LTE Transfer Important?

When density is high and collisions are frequent enough, population numbers are determined by local conditions, and given by the Saha-Boltzmann relations at the kinetic temperature of the gas.

The radiation field is then given by the Planck function.
When is Non-LTE Transfer Important?

- When density is high and collisions are frequent enough, population numbers are determined by local conditions, and given by the Saha-Boltzmann relations at the kinetic temperature of the gas.
- The radiation field is then given by the Planck function.
- As densities drop with height, collisions become less frequent, and radiative transitions become relatively more important.

Han Uitenbroek/NSO

Introduction to the RH Radiative Transfer Code
When density is high and collisions are frequent enough, population numbers are determined by local conditions, and given by the Saha-Boltzmann relations at the kinetic temperature of the gas.

The radiation field is then given by the Planck function.

As densities drop with height, collisions become less frequent, and radiative transitions become relatively more important.

Populations are now determined not only by local collisional rates, but also by non-local conditions, namely the radiation field that comes from different places in the atmosphere.
When density is high and collisions are frequent enough, population numbers are determined by local conditions, and given by the Saha-Boltzmann relations at the kinetic temperature of the gas.

The radiation field is then given by the Planck function.

As densities drop with height, collisions become less frequent, and radiative transitions become relatively more important.

Populations are now determined not only by local collisional rates, but also by non-local conditions, namely the radiation field that comes from different places in the atmosphere.

Need to find a global solution, not only in space, but also in wavelength.
When is Non-LTE Transfer Important?

- When density is high and collisions are frequent enough, population numbers are determined by local conditions, and given by the Saha-Boltzmann relations at the kinetic temperature of the gas.

- The radiation field is then given by the Planck function.

- As densities drop with height, collisions become less frequent, and radiative transitions become relatively more important.

- Populations are now determined not only by local collisional rates, but also by non-local conditions, namely the radiation field that comes from different places in the atmosphere.

- Need to find a global solution, not only in space, but also in wavelength.
Directory structure of RH code

- RH_v2
 - librh.a
 - librh_f90.a
- idl
- tools
- atlases
- rhf1d
 - solveray
- rhsc2d
 - solveray
- rhsc3d
 - solveray
- rhsphere
- run1
- run2
- run3
Main Input files for the RH code

- keyword.input
- atoms.input
- molecules.input
Introduction to the RH Radiative Transfer Code

Keyword.input
- atoms.input
 - Atom1.atom
 - Atom2.atom
 - Atom3.atom
- molecules.input
 - Molecule1.molecule
 - Molecule2.molecule
 - Molecule3.molecule
- Atmosphere
- Magnetic field
- abundances
- Kurucz.input
 - List1.gf
 - List2.gf
 - List3.gf
- Magnetic field
 - list1
 - list2
 - list3
Input structure atmospheric data file

example.atmos

example.B

dimensions
boundary conditions
temperature
electron density
hydrogen density
microturbulence
velocity structure
field strength
field inclination
field azimuth
Input structure atomic data file

example.atom

- ID
- bound-bound list
- bound-free list
- collisions

- energy levels
- statistical weight
- level label
- ionization stage
- level IDs
- oscillator strength
- line shape
- wavelength grid parameters
- damping parameters

- cross section
- wavelength shape
- cross section
- temperature dependence
Main Input files for the RH code

- keyword.input
- atoms.input
- molecules.input
RH Analyze

Analyse 1-D
Wavelength and line selection in Non-LTE calculations

- Representative bound–bound and bound–free transitions so that populations are properly calculated with statistical equilibrium.
- Representative wavelength coverage so that radiative rates in every transition are properly estimated.
Wavelength grid for Mg II h&k lines

```
Wavelength [nm] 0 2•10⁻⁹ 4•10⁻⁹ 6•10⁻⁹ 8•10⁻⁹
Flux [J m⁻² s⁻¹ Hz⁻¹] 279.6 279.8 280.0 280.2 280.4
```

Back
Version: rh1.0, 1-D plane-parallel

First specify input files for atmosphere and abundances
(both KEYWORD_REQUIRED).
ATMOS_FILE = ../../Atmos/FALP80.atmos
ABUND_FILE = ../../Atoms/abundance.input

Set choice of number of rays (KEYWORD_OPTIONAL).
NRAYS = 5

Input file for all atoms (KEYWORD_REQUIRED).
ATOMS_FILE = atoms.input

Input file for all molecules (KEYWORD_REQUIRED).
MOLECULES_FILE = molecules.input

Table of additional wavelengths KEYWORD_OPTIONAL
WAVETABLE = ../../Atoms/wave_files/Gband_filter.wave

Maximum number of iterations to initialize scattering radiation
field in the background (KEYWORD_OPTIONAL).
N_MAX_SCATTER = 2

Row of statistical equilibrium equation that is to be eliminated
to enforce particle conservation (KEYWORD_REQUIRED). If set to -1
the row with the largest population from the previous iteration will
be eliminated at each spatial location.
I_SUM = -1

Set number of maximum iterations and convergence limit
(both KEYWORD_REQUIRED).
N_MAX_ITER = 25

ITER_LIMIT = 1.0E-2
The keyword.input file

Parameters for Ng convergence acceleration (all are KEYWORD_OPTIONAL)
(default for NG.ORDER = 0, no acceleration)
NG_DELAY = 15
NG_ORDER = 2
NG_PERIOD = 3

PRD specific parameters. PRD_N_MAX_ITER is the maximum number of
PRD iterations per main iteration. PRD_ITER_LIMIT is the convergence
limit of PRD iterations in each main iteration. If PRD_ITER_LIMIT is
negative, the dpropsmax of the current main iteration is taken as the
PRD convergence limit. Both are KEYWORD_OPTIONAL. If PRD_N_MAX_ITER
all lines will be treated in CRD.
PRD_N_MAX_ITER = 3
PRD_ITER_LIMIT = 1.0E-2

PRD.NG._?? are the Ng accelleration parameters for PRD iterations
(all are KEYWORD_OPTIONAL).

PRD.NG_DELAY = 0
PRD.NG_ORDER = 2
PRD.NG_PERIOD = 3

If PRD_ANGLE DEP is set to TRUE angle-dependent PRD is used
(KEYWORD_DEFAULT). The default is FALSE.

PRD_ANGLE DEP = TRUE
XRD = FALSE
The keyword.input file

Temporary files for mean intensities and background opacities
(KEYWORD_REQUIRED).

J_FILE = J.dat
STARTING_J = NEW_J
BACKGROUND_FILE = background.dat
OLD_BACKGROUND = FALSE

Apply multiplicative factor to all background metals. METALLICITY
is specified in terms of dex, ie -1.0 means a tenfold decrease in metals
Type is KEYWORD_DEFAULT.

METALLICITY = 0.4
Data file with lines in Bob Kurucz's format. Type is KEYWORD_OPTIONAL.
When KURUCZ_DATA is set to "none" (the default value) no data is read.
Solve for electron density if SOLVE_NE is set to ONCE or ITERATION.
Type is KEYWORD_DEFAULT. Default value is FALSE.
KURUCZ_PF_DATA should point to the file with Kurucz partition function
tables (as function of T) for the first 100 periodic table elements.
It is needed when either KURUCZ_DATA or SOLVE_NE is set and is of
type KEYWORD_DEFAULT
KURUCZ_PF_DATA = ../../Atoms/pf.Kurucz.input
KURUCZ_DATA = kurucz.input
RLK_SCATTER = TRUE
SOLVE_NE = NONE

Set HYDROGEN_LTE = TRUE if hydrogen in the background has to be
treated with LTE populations (KEYWORD_DEFAULT). Default is FALSE
HYDROGEN_LTE = TRUE
HYDROSTATIC = TRUE
The keyword.input file

Data file for background opacity fudge to compensate for missing
UV line haze. Type is KEYWORD_OPTIONAL. When set to “none” (the
default value) no data is read.

OPACITY_FUDGE = ../../Atmos/opacity_fudge.input

Output files for atomic data, spectrum, populations, and geometry
(all KEYWORD_DEFAULT).
DEFAULT = SPECTRUM_OUTPUT = spectrum.out
OPACITY_OUTPUT, RADRATE_OUTPUT, COLLRATE_OUTPUT, and DAMPING_OUTPUT # are all
KEYWORD_OPTIONAL

When set to “none” (which is the default) no output is produced.
For keyword OPACITY_OUTPUT and emissivity of active transitions of
the solution is written to the specified file.
For keyword RADRATE_OUTPUT radiative rates for active transitions are
written to the specified file.
For keyword COLLRATE_OUTPUT collisional rates for active transitions are
written to the specified file.
For keyword DAMPING_OUTPUT damping parameters for active transitions are
written to the specified file, as well as the broadening velocity
for the specific atom.
OPACITY_OUTPUT = opacity.out
RADRATE_OUTPUT = radrate.out
COLLRATE_OUTPUT = collrate.out
DAMPING_OUTPUT = damping.out

Typical value of “micro-turbulence” in [km/s]. Used in getlambda.c
to convert doppler units to real wavelengths.

VMICRO_CHAR = 3.0
The keyword.input file

Treshold value of macroscopic velocity in [km/s] above which line
absorption coefficients are calculated seperately for the different mu
values (KEYWORD_OPTIONAL).
VMACRO_TRESH = 1.0E-1
Reference wavelength in [nm] (KEYWORD_DEFAULT). When not specified
or set to 0.0 no additional wavelength point will be added.
DEFAULT – LAMBDA_REF = 500.0
If VACUUM_TO_AIR (KEYWORD_OPTIONAL) is set to TRUE wavelengths at and above
VACUUM_TO_AIR_LIMIT (see spectrum.h) will be converted to air wavelength
in the output files.

VACUUM_TO_AIR = TRUE
The keyword.input file

Input file for the magnetic field (KEYWORD_OPTIONAL). Default is "none".
STOKES_INPUT = ../../Atmos/FALC_82.2000G_45.B
Input Stokes mode (KEYWORD_OPTIONAL).
Options are: NO_STOKES, FIELD_FREE, POLARIZATION_FREE, and FULL_STOKES.
STOKES_MODE = FULL_STOKES
Include magneto-optical effects (KEYWORD_DEFAULT). Default is TRUE.
MAGNETO_OPTICAL = FALSE
Typical value of magnetic field in Tesla (1 T = 1.0E+4 Gauss)
(KEYWORD_DEFAULT).
B_STRENGTH_CHAR = 0.20
Include scattering polarization in the background (KEYWORD_DEFAULT).
Default is FALSE.
BACKGROUND_POLARIZATION = TRUE
LIMIT_MEMORY = TRUE
ALLOW_PASSIVE_BB = FALSE
Set this value to TRUE to get printout on CPU usage (may take some
extra CPU usage though!).
PRINT_CPU = TRUE
Enable program to do the formal solution for N_THREADS wavelengths
concurrently (KEYWORD_OPTIONAL). Maximum number of threads is limited
by the value of N_THREAD_LIMIT in routine setThreadValue in file
readvalue.c. Typically, N_THREADS should be equal to the number of
processors in a multi-processor machine, or zero (the default) otherwise.
N_THREADS = 4
End
Natom
4
#
#
Atoms
model file ACTIVE/PASSIVE INITIAL_SOLUTION population file
../../Atoms/H.6.atom ACTIVE ZERO_RADIATION pops.H.out
../../Atoms/C.atom PASSIVE LTE_POPULATIONS
../../Atoms/O.atom ACTIVE OLD_POPULATIONS pops.O.out
../../Atoms/Si.atom PASSIVE ZERO_RADIATION
#

Back
The molecules.input file

Nmolecule
#
5
#
molecules

..../Molecules/H2.molecule PASSIVE LTE_POPULATIONS
..../Molecules/CH.molecule PASSIVE LTE_POPULATIONS
..../Molecules/CO.molecule ACTIVE LTE_POPULATIONS
..../Molecules/CN.molecule PASSIVE LTE_POPULATIONS

..../Molecules/H2O.molecule PASSIVE LTE_POPULATIONS