Collaborative work between NWRA and GONG since the advent of the Solar Dynamics Observatory (SDO) has led to significant improvements in the sensitivity of seismic maps of magnetic regions in the Sun’s far hemisphere. Maps of active regions in the Sun’s far hemisphere are presently generated twice daily by the application of computational seismic holography to Doppler seismic observations from Helioseismic Magnetic Imager (HMI) aboard the SDO. These are published and archived by the Joint Science Operations Center (JSOC) at Stanford. The development and implementation of more discriminating diagnostic utilities in the software to run the spherical-seismic-holography code have identified promising avenues for further improvement. The first far-side seismic maps reliably showed only the largest active regions in the Sun’s far hemisphere. Improved pre-processing of helioseismic observations from SDO/HMI, made possible by far greater computational resources, have led to far-side maps with greater sensitivity about a factor of two than what we had at the turn of the century. Given the demographics of active regions, i.e., a rapidly increasing population with decreasing magnetic flux, this greatly increases the number of far-side signatures that can be reliably attributed to solar activity. We will summarize the database of far-side seismic maps now publicly available at the Stanford JSOC and its applications to solar UV irradiance forecasting and coronal-magnetic forecasting, and discuss prospects for other applications.