Stellar Magnetic Fields - and their influence on the Habitability of Exoplanets

Theresa Lueftinger

M. Güdel, C. Johnstone
and the PatH Collaboration

Department of Astrophysics, University of Vienna

Theresa Lueftinger, IAU 305, Punta Leona, Costa Rica 05.12.2014
Stellar magnetic fields responsible for activity -> flares, CME’s, etc. and winds (Space Weather)

these, in turn, crucially influence the atmospheres of surrounding (potentially habitable) planets

polarimetry: main tool to study magnetic fields
- needed to investigate field structures of (young) solar type stars (covering evolution along the PMS)
- wind models, couple to planetary atmospheres
- effect of a host star on the life-friendliness of a planet

- lucky times: ESPaDOnS, NARVAL, HARPSpol

FUTURE Instrumentation: Arago, JWST, PLATO, ELT, SPIRou etc.
Pathways to Habitability
From Disk to Stars, Planets to Life

Manuel Güdel, Theresa Lüftinger,
Ernst Dorfi, Rudolf Dvorak,
Maxim Khodachenko, Helmut Lammer,
Elke Pilat-Lohinger

cia. 40 national & 40 international co-operation partners
“Astronomical” Factors and Interactions

Dynamical stability

Atmosphere-exosphere-magnetosphere system

Stellar winds

protoplanetary disks

High-energy radiation and particles

Central star or binary

Planetary moons

Planetary interior/dynamo/convection/plate tectonics

landmass vs. oceans

“Planetary Factors”

(Kasting & Catling 29003)
Short Overview – Key Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program established</td>
<td>1 March 2012</td>
</tr>
<tr>
<td>Type</td>
<td>Excellence/key program, research network</td>
</tr>
<tr>
<td>Funding agency</td>
<td>Austrian Science Fund (FWF)</td>
</tr>
<tr>
<td>Duration</td>
<td>4 + 4 years (until 29 Feb. 2020)</td>
</tr>
<tr>
<td>Institutes</td>
<td>Univ. Vienna, Univ. Graz, IWF Graz</td>
</tr>
<tr>
<td>Funding volume</td>
<td>2.5 M€ / 4 years</td>
</tr>
<tr>
<td>Positions</td>
<td>12 (~50% PhD students, 50% postdocs)</td>
</tr>
<tr>
<td>Structure</td>
<td>* 6 subprojects, led by project leaders</td>
</tr>
<tr>
<td></td>
<td>* reviewed annually by advisory committee</td>
</tr>
<tr>
<td></td>
<td>* 2 team science meetings/yr</td>
</tr>
<tr>
<td>Short Overview – Key Parameters</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Program established</td>
<td>1 March 2012</td>
</tr>
<tr>
<td>Type</td>
<td>Excellence/key program, research network</td>
</tr>
<tr>
<td>Funding agency</td>
<td>Austrian Science Fund (FWF)</td>
</tr>
<tr>
<td>Duration</td>
<td>4 + 4 years (until 29 Feb. 2020)</td>
</tr>
<tr>
<td>Institutes</td>
<td>Univ. Vienna, Univ. Graz, IWF Graz</td>
</tr>
<tr>
<td>Funding volume</td>
<td>2.5 M€ / 4 years</td>
</tr>
<tr>
<td>Positions</td>
<td>12 (~50% PhD students, 50% postdocs)</td>
</tr>
</tbody>
</table>
Candidates in the Habitable Zone

As of January 7, 2013

~1822 exoplanets (as of 28.09.2014), 467 in multiple systems
2. Star – Planet Interaction

Consider stellar, interplanetary, and planetary environment as one physical system to be studied under extreme conditions in context:

- Stellar magnetic fields
- Stellar activity
- Stellar winds
- Transport mechanisms

- Magnetosphere-wind interaction
- Radiation-atmosphere interaction
- Magnetosphere-atmosphere system
- Gravitational perturbations
Field structure and strength on stars

successful survey proposals: HARPSpol and CRIRES@ESO, ESPaDOnS@CFHT young clusters (Lupus, Taurus Chamaeleon, Ophiuchus, Orion), snapshots of ~45 T Tauri stars of different evolutionary stages.

- **part I:** HARPSpol: 3n
 CRIRES: 10h
 CFHT: 25h

- **part II:** HARPSpol: 4n
 CRIRES: 4h
 CFHT: 35h

Magnetic field structure, photometric spots and chemical structure (top to bottom) of an A star (Lueftinger et al. 2010)

Magnetosphere of the T Tauri star V2129 Oph based on ZDI (from Donati et al. 2007)
Field structure and strength on stars
successful survey proposals: HARPSpol and CRIRES@ESO, ESPaDOnS@CFHT young clusters (Lupus, Taurus Chamaeleon, Ophiuchus, Orion), snapshots of ~45 T Tauri stars of different evolutionary stages.

- **part I:** HARPSpol: 3n
 CRIRES: 10h
 CFHT: 25h

- **part II:** HARPSpol: 4n
 CRIRES: 4h
 CFHT: 35h

Note: detections in nearly all of them
analysis currently ongoing, ZDI proposal submitted
Maps + potential field extrapolation: AA Tau (left) & V2247 Oph (right)

wind orientation matters
Maps + potential field extrapolation: AA Tau (left) & V2247 Oph (right)

wind speed of our slow and fast wind models (versatile advection code)
(Johnstone, Guedel, Lueftinger et al., I + II, submitted)
angular velocity of core (dashed) and envelope (solid) rotator models (scaled to solar angular velocity)

Gallet & Bouvier (2013)
evolution of solar wind mass loss rates with age on the MS at the 10th (lower) and 90th (upper) percentiles along the rotation tracks.

Johnstone, Guedel, Lueftinger et al. (submitted)
Evolution of the wind speed at 1 AU for different stellar masses

Johnstone, Guedel, Lueftinger et al. submitted
Evolution of the wind speed at 1 AU for different stellar masses
scaled poloidal wind velocity based on map of V374 Peg

Vidotto et al. (2011)
Some constraints from radio observations

- kappa Cet:
 \[M_{\text{dot}} < 6.0 \times 10^{-12} \, M_{\odot} / \text{yr} \]

- pi1 UMa: [new NARVAL observations]
 \[M_{\text{dot}} < 2.5 \times 10^{-11} \, M_{\odot} / \text{yr} \]

- ESPaDOnS/NARVAL observations of:
 - EK Dra (100 Myr),
 - \(\chi^1 \) Ori (300 Myr),
 - \(\kappa^1 \) Cet (700 Myr),
 - pi1 UMa, new set in 2014/15

 \[\rightarrow \text{ZDI} \]
Transit observations of HD 209458b in Lyman α: strong absorption in blue and red wings -> hydrogen atoms escaping from planets atmosphere at high velocities
possible sources: a) acceleration by stellar radiation pressure
b) natural spectral line broadening
c) charge exchange with stellar wind

produced models, that include all these processes

Left: Slice of modeled 3D atomic H corona around HD 209458b
Right: Illustration of near-planet geometry
Magnetic moment and plasma environment of HD 209458b

Left: Slice of modeled 3D atomic H corona around HD 209458b
Right: modeled and observed spectra at mid-transit

Results support a stellar wind of ~400 km/s, and planetary magnetic moment of ~1.6x10^26 amperes per square meter.

-> similar analysis of GJ436b ongoing – planet around red dwarf

more in a recently printed Springer book: ‘Characterizing Stellar and Exoplanetary Environments’, (eds. Lammer, Khodachenko) Linsky et al., Lueftinger et al., Wood et al., etc.

and via: http://path.univie.ac.at/

Conference on Pathways to Habitability:
8 to 12 February 2016, Vienna, Austria
Magnetic fields in Young Stars

ZDI of V410 Tau

[Graph and images showing radial, meridional, and azimuthal fields, as well as brightness]