The evolution of individual and groups of flux tubes as seen by IMaX/Sunrise

Jose Carlos del Toro Iniesta
Iker S. Requerey
Solar Physics Group SPG @ IAA-CSIC
Introduction

- Conventional picture for flux tube formation
 - Theory: flux expulsion (Parker 1963; Weiss 1964, 66) + convective collapse (Parker 1978; Spruit 1979) + oscillations (Hasan 1985), rebound shocks (Takeuchi 1999), jets in the periphery (Steiner et al. 1998),?

- Evolution of groups and chains of flux tubes
 - Bright points (Berger & Title 1996, Berger et al. 1998, Vittichié et al. 2009): fragmentation and coalescence
PHASE I: FLUX CONCENTRATION (Requerey et al. 2014)

- A small loop appears over a granule
- Granules drag it (flux expulsion) as the Ω loop ascends
- The negative foot disappears. Flux cancellation (Borrero et al. 2010)
- Merging and splitting ($4 \times 10^{16} < \phi < 5 \times 10^{17}$ Mx; $300 < B < 600$ G)
PHASE II: CONVECTIVE COLLAPSE *(Requerey et al. 2014)*

- Typical equipartition B
- Area decreases while $0.9 < v_{LOS} < 1.6$ km/s and $600 < B < 1600$ G
- BPs appear. That in the periphery: small granule
- Petal-like granules *(Muller et al. 1989, Muller & Roudier 1992)* (observed in the lab.)
PHASE III: THE MATURE TUBE (Requerey et al. 2014)

- B drops below 1 kG to increase later (Martínez González et al. 2011)
- v_{LOS} in phase with B (0 km/s when 700 G and 2.8 km/s when 1500 G)
- I_c remains constant. Upflow decreases while BP fades out
- Second upflow when the tube is compressed by granules (simultaneous with a downflow) (rings by Narayan & Scharmer 2010)
Multi-cored flux structures

The evolution of individual and groups of flux tubes as seen by IMaX
The evolution of individual and groups of flux tubes as seen by IMaX.
BPs and magnetic structures

The evolution of individual and groups of flux tubes as seen by IMaX
Dynamics of multi-core m.s.

- BPs: fragmentation and coalescence. We provide B
- Different cores are recognized in the p.q. maps
- All cores seem to belong to a single structure
- Magnetic flux remains constant (resolved structures)
- Fragmentation and coalescence are governed by convection. Interchange instability (Bünte 1993)
- Strong flows appear within and in the periphery
- Magnetic cores coincide with CN (line-core) BPs and not that much with Ca II
- Magnetic cores do not coincide with continuum BPs
The evolution of individual and groups of flux tubes as seen by IMaX