The origin of magnetic fields in hot stars

Coralie Neiner
LESIA, Paris Observatory, France

in collaboration with S. Mathis (CEA, France), E. Alecian (IPAG, France), J. Grunhut (ESO), C. Emeriau (CEA, France) and the BinaMIs and MiMIs collaborations
Magnetism in single hot stars

- 7% of single massive (OB) stars are magnetic
- 5-10% of intermediate-mass AB stars are magnetic

The magnetic fields of single OBA stars are simple, mainly oblique dipoles, with $B_p \sim 100$ to 10000 G.

What is the origin of these magnetic fields?
Core dynamo fields?

A dynamo can generate a field in the convective core.

→ the time needed for the field to be visible at the surface is longer than the lifetime of the star.

(Charbonneau & MacGregor, 2001, Brun et al. 2005)
Dynamo fields in the radiative envelope?

It is not possible to excite/maintain a dynamo in the radiative envelope (Zahn, Brun & Mathis 2007).

Dynamo implies a correlation between rotation and field: not observed.
Dynamo in sub-surface convection zone

→ a dynamo in the sub-surface convection zone can develop

→ these fields are 10 to 100 times weaker than the observed ones

→ They would produce small scale field structures

(Cantiello & Braithwaite 2011)
Fossil fields

- stable analytical mixed configuration of fossil fields predict simple dipole
- simulations of fossil fields reproduce these configurations

These configurations are the ones observed on the main sequence (MiMeS)
They are also observed on the PMS (Alecian et al. 2013)

→ The magnetic field of massive stars is of fossil origin!
Fossil fields

(Extra ?) tilt of the dipole ?

Dipole

Relaxation to dipole

Seed fossil field enhanced by dynamo
Interaction between a core dynamo and a fossil field

ASH 3D simulations: interaction of dynamo in core and fossil field in envelope

Modifications:
- strengthen the core field
- makes rotation of the envelope more rigid
- changes the orientation of the fossil field

(Featherstone et al. 2009)
Impact of rotation on a fossil field

Theoretical calculations show that

- rotation does not affect the magnetic configuration (Emeriau & Mathis 2014)
- rapid rotation hinders stability of the fossil fields (Emeriau et al. 2015)

→ This would explain why magnetic fields have not been directly detected in classical Be stars so far
→ However, two rapidly rotating magnetic B stars exist: HR5907 and HR7355

When stability is not reached, the star can still host an ultra-weak (small-scale?) field (Aurière et al. 2007, Lignières et al. 2014, Braithwaite & Cantiello 2013) → see talk by A. Blazere
BinaMlcs: Binity and Magnetic Interactions in various classes of Stars

→ exploit binarity to yield new constraints on the physical processes in hot and cool magnetic stars
→ 2 large programs: ESPaDOnS@CFHT and Narval@TBL
→ role of magnetism during stellar formation, magnetospheric star-star (and star-planet) interactions, impact of tidal flows on fossil and dynamo fields, impact of magnetism on mass and angular momentum transfer

©S. Gregory

Alecian et al. in prep.
Statistical results on magnetism in hot binaries

7 confirmed OBA SB2 systems with a magnetic component → magnetic hot binaries exist

Statistical study: 201 hot (O to F5) SB2 binary targets observed (402 stars) → we should have detected 28-40 magnetic stars (if 7-10% as single stars) → 1 detection of a magnetic F4+F5 system, 0 detection in 200 systems → magnetism is less present (~1%) in hot binaries than in single hot stars

Related to star formation? → no fragmentation of dense core when the medium is magnetic (Commerçon et al. 2011)
Conclusions

- The field of hot stars are simple (oblique dipole), strong and stable → the fields are of fossil origin

- Rapid rotation makes it more difficult for fossil fields to reach stability → explains the lack of fields in classical Be stars?

- ~7% of single OBA stars are magnetic, but only ~1% of binary hot stars are magnetic
 → There are much less magnetic hot binaries than magnetic single hot stars
 → This is probably related to stellar formation and provides constraints on formation theory and simulations