Ultra-weak magnetic fields and atmospheric dynamics of Am stars

Aurore Blazère

LESIA (Meudon, France) & IRAP (Toulouse, France)

P. Petit, F. Lignières, M. Aurière, J. Ballot, T. Böhm, C. Folsom, A. Lopez Ariste, G.A. Wade

IAU symposium 305 Punta Leona 03/12/2014
Magnetic dichotomy in A stars

- Only 5-10 % of A stars exhibit strong magnetic fields ($B_l > 100G$).
 - Ap stars: simple field topology (dominated by dipole)

- Weak magnetic fields ($B_l < 1G$):
 - Normal A stars, Am stars
Weak magnetic fields in A/B stars

- Weak magnetic field discovered in normal A star Vega (Lignières et al. 2009, Petit et al. 2010)

- No similar detection in two normal B stars (Neiner et al. 2014, Wade et al. 2014)

- Stokes V signatures in Am star Sirius A (Petit et al. 2011). Zeeman effect?
Targets

- Two bright Am stars: β UMa and θ Leo
- Am stars: chemically peculiar (metal rich) stars
- Target parameters:

<table>
<thead>
<tr>
<th></th>
<th>β UMa</th>
<th>θ Leo</th>
</tr>
</thead>
<tbody>
<tr>
<td>spectral type</td>
<td>A1V</td>
<td>A2V</td>
</tr>
<tr>
<td>T_{eff}</td>
<td>9600Ka</td>
<td>9350Kb</td>
</tr>
<tr>
<td>log g</td>
<td>3.83c</td>
<td>3.65b</td>
</tr>
<tr>
<td>Mass</td>
<td>2.7 M_{\odot}^d</td>
<td>2.5 M_{\odot}^d</td>
</tr>
<tr>
<td>Radius</td>
<td>3.0 R_{\odot}^a</td>
<td>4.3 R_{\odot}^a</td>
</tr>
<tr>
<td>vsini</td>
<td>46 km/se</td>
<td>23 km/se</td>
</tr>
<tr>
<td>L_{\odot}</td>
<td>63a</td>
<td>141d</td>
</tr>
<tr>
<td>Age (Myr)</td>
<td>500f</td>
<td>550g</td>
</tr>
</tbody>
</table>

a Boyajian et al. (2012)
b Smith & Dworetsky (1993)
c Monier (2005)
d Royer et al. (2002)
e Wyatt et al. (2007)
f Palous & Hauck (1986)
g Zorec & Royer (2012)
Observations

• Data taken with NARVAL spectropolarimeter:
 – β UMa: 149 spectra (2010-2011)
 – θ Leo : 171 spectra (2012-2014)

• Least-Squares Deconvolution (LSD) technique
 – No signal in individual LSD V line profiles
 (using ≈1100 photospheric spectral lines)

• Co-addition of all LSD profiles of a same star
 – Final SNR ≈500000
Results

Signature shapes similar to Sirius A: prominent positive lobe.
Results

• What is the physical origin of V signatures in line profile?
 - Zeeman effect?

• Tests to ascertain magnetic origin:
 - Magnetic field \(\rightarrow \) amplitude of V profiles depends on line parameters (line depth, Landé factor, wavelength,..).
 - I compute LSD profiles from two line lists (extracted from our original list) with one line parameter varied in the two sub-lists.
 - Compare results with same test applied to standard, strongly magnetic Ap star \(\alpha^2 CVn \).
Test: Low vs high Landé Factors

\[\alpha^2 CVn \]
Test: Low vs high Landé Factors

\[\alpha^2 \text{CVn} \]

\[\beta \text{UMa} \]

\[\theta \text{Leo} \]
Test: blue vs red Wavelengths
Test: blue vs red Wavelengths

\[\alpha^2 \text{CVn} \]

\[\beta \text{UMa} \]

\[\theta \text{Leo} \]
Test: low vs high line depth

\[\alpha^2 \text{CVn} \]

\[\alpha_2 \text{CVn} \]

![Graph showing low vs high line depth comparison with two curves: one for low depth and another for high depth. The x-axis represents velocity (km/s) ranging from -200 to 200, and the y-axis represents V ranging from -0.01 to 0.01.](image)
Test: low vs high line depth
Test: low vs high line depth

Magnetic origin: confirmed!
Strong asymmetry in V profiles

- Stokes V profiles with non-zero integral: not expected in standard Zeeman effect.

- In solar observations, similar shapes interpreted as a combination of vertical gradients in both velocity and magnetic fields.

- Detection of a microturbulence contribution in Am stars (Landstreet et al. 2009) convection.

- Models predict the widespread presence of shocks in the superficial layers of Am stars (Kupka et al. 2009).
Fossil field or Dynamo?

- Fossil field:
 - Failed fossil field (Braithwaite & Cantiello 2013, Aurière et al. 2007)

- Dynamo:
 - Surface dynamo
 - In convective core
 - In iron convective zone
 - In radiative zone

Problem: timescale to carry magnetic flux to stellar surface
Conclusion

- New observations and LSD tests confirm magnetic origin of Stokes V signatures.

- 100% magnetic detection rate in Am stars so far.

- Stokes V asymmetry: new information on photospheric dynamics of Am stars?

- New observations are currently being carried out to identify physical origin of weak magnetic fields in A stars.
Thanks for your attention!