Research

HAO Science

...from the Sun's interior to the Earth's atmosphere

The High Altitude Observatory, through its collaboration with scientists and scientific organizations around the world is recognized as one of the premier authorities of Sun and Sun-Earth studies.

Tightly integrated activities between HAO's scientific staff and its Instrumentation Group (engineering team) strengthen its core program, and in turn yield a variety of exciting results in the scientific exploration of the Sun and the influences it exerts on the terrestrial atmosphere and climate.

The scientific program of HAO is solar-terrestrial physics, broadly interpreted. Included is solar physics, physics of the heliosphere, the study of geospace and space weather, and the physics of the Earth's magnetosphere and upper atmosphere.

Research Highlights

Coronal Magnetism

MLSO total eclipse, 1980 February 16, India
Monday, June 18, 2018

BC Low elaborates on the extraordinary sixty years of progress made to space observation of the Sun, solar wind, planets and their magnetospheres. He notes that space platforms complementing ground-based observatories have transformed solar physics.

Self-consistent modeling of electron precipitation and responses in the ionosphere

The time evolution of height-dependent (a) electron density, (b) ionization rate, (c) Pedersen conductivity, and (d) Hall conductivity at MLT = 6 and magnetic latitude of 60
Monday, June 18, 2018

Stan Solomon et al, dicuss a new modeling capability that self-consistently couples physics-based magnetospheric 18 electron precipitation with its impact on the ionosphere, representing a significant improvement over previous models.

The influence of internal atmospheric variability on the ionosphere response to a geomagnetic storm

Change in WACCMX simulated total electron content (TEC) during a geomagnetic
Monday, June 18, 2018

Nicholas Pedatella notes that geomagnetic storms are an important driver of variability in Earth’s ionosphere, and can have significant societal impacts through the ionosphere’s impact on communications and navigation systems (e.g., GPS).

Zonally-Symmetric Oscillations of the Thermosphere at Planetary-Wave Periods

responses at 120 km due to different lower boundary forcing of the TIEGCM
Friday, May 11, 2018

New mechanisms for imposing planetary-wave (PW) variability on the ionosphere thermosphere system are discovered in numerical experiments conducted with the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere- Electrodynamics General circulation Model (TIE-GCM).

Spectroscopy and atomic physics

the solar spectrum
Friday, May 4, 2018

A short guide to spectroscopy is given, with emphasis upon the elementary physics needed to understand and begin modeling the radiation emerging from astrophysical plasmas using the Sun as a guide, without bias towards a particular region of the Sun's atmosphere.

Physical Processes Driving the Response of the F2-region Ionosphere to the 21 August 2017 Solar Eclipse at Millstone Hill

UT and altitude variations of electron densities
Friday, May 4, 2018

The high-resolution thermosphere-ionosphere-electrodynamics general circulation model (TIEGCM) was used to investigate the cause of F2-region electron density (Ne) responses to the Great American Solar Eclipse on 21 August 2017 at Millstone Hill (42.610N, 71.480W).

Dependence of lunar tide of the equatorial electrojet on the winter-time polar vortex, solar flux and QBO

Dependence of lunar tide image
Thursday, April 5, 2018

The lower atmospheric forcing effects on the ionosphere are particularly evident during extreme meteorological events known as sudden stratospheric warmings (SSWs).

WACCM Simulations of Zonal Mean Gravity Wave Drag Short-term Variability in the Southern Hemisphere Mesosphere

Gravity wave drag anomaly
Friday, March 16, 2018

Whole Atmosphere Community Climate Model (WACCM) simulations are used to investigate the short-term (30-day) temporal variability in the mid- and high-latitude Southern Hemisphere mesosphere.

Ionospheric Electron Content during Solar Cycle 23

Comparison of measured to modeled global total electron content
Tuesday, March 13, 2018

Solomon & Qian show that solar minima are not all the same, and may have implications for understanding the Sun during the extended periods of very low activity known as “grand minima” that have sometimes occurred in the past, the best known of which was the Maunder Minimum during 1650–1700.

The longitudinal variations of upper thermospheric zonal winds observed by the CHAMP satellite at low and mid-latitudes

Longitudinal structures of zonal winds
Thursday, March 1, 2018

In this work, Kedeng Zhang, Wenbin Wang and others, investigate the longitudinal patterns of thermospheric zonal winds (~400 km) and their seasonal and solar activity dependence.

Areas of Focus

A Whole Atmosphere Community Climate Model (WACCM)

The Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X) is a comprehensive numerical model, spanning the range of altitude from the Earth’s surface to the upper thermosphere.

Assimilative Mapping of Ionospheric Electrodynamics (AMIE)

The AMIE procedure is an optimally constrained, weighted least-squares fit of electric potential distribution to diverse types of atmospheric observations. Knowledge of these distributions is important in many areas of magnetospheric, ionospheric, and thermospheric physics.

Challenges in Observing Short-term Tidal Variability

Modeling the upper levels of the Earth’s atmosphere, is one of the strengths of the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) supported as a community model by scientists at the High Altitude Observatory.

Coupled Magnetosphere Ionosphere Thermosphere Model (CMIT)

The Coupled Magnetosphere Ionosphere Thermosphere (CMIT) model consists of the Lyon-Fedder-Mobarry (LFM) model of the magnetosphere coupled to the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM).

Data-Optimized Coronal Field Model (DOCFM)

DOCFM is an NCAR/CfA collaboration that is funded by AFOSR to model the global coronal magnetic field using magnetometric and other observations, with the goal of improving space weather forecasts of magnetic orientation within c

FORWARD Model

The FORWARD model is a suite of IDL and fortran codes that calculates simulated coronal polarization signals from numerical and analytical models of the corona.

Global Airglow Model

The GLobal airglOW model, also known as GLOW, is a toolkit of subroutines and driver programs for performing calculations of optical emissions in the upper atmosphere, particularly the thermosphere and ionosphere, above about 100 km altitude.

Global Scale Wave Model (GSWM)

The GSWM solves the linearized and extended Navier-Stokes equations for steady-state global temperature and wind perturbations. GSWM may be used to calculate an "unforced" planetary wave response for a specified period and zonal wavenumber, or the thermally-driven response for either a diurnal or semidiurnal atmospheric tide.

LYON-FEDDER-MOBARRY (LFM) GLOBAL MHD CODE

The LFM Code is an integrated simulation model for the global magnetosphere-ionosphere system. The heart of the model is a time-dependent, ideal MHD calculation of the state of the magnetosphere.

Thermosphere Ionosphere Electrodynamic General Circulation Models (TGCMs)

The NCAR TGCM's are three-dimensional, time-dependent models of the EARTH's neutral upper atmosphere.

Fabry Perot Interferometer at Resolute Bay, Canada

Resolute, Canada (75N) is the site chosen for the deployment of the National Science Foundation Advance Modular Incoherent Scatter Radar (AMISR). AMISR is a state of the art phase array radar, which allows fast electronic steering of the radar beam to track fast moving auroral features.

Fabry-Perot Interferometer at Boulder, Colorado

On March 16, 2012, a Fabry-Perot Interferometer (FPI) was installed at the NCAR Marshall field site, just to the south-east of Boulder, to observe thermospheric and mesospheric winds.

Fabry-Perot Interferometer at Palmer, Antarctica

The Palmer station Fabry-Perot interferometer project is funded by the National Science Foundation Office of Polar Programs. The goal is to study the upper atmosphere and ionosphere over the Antarctica Peninsula. Palmer station is an year-around US Antarctica Research station located on the Anvers Island near the Antarctica Peninsula.

HiWind

HiWind was the first balloon borne Fabry-Perot interferometer designed to measure summer time polar cap thermospheric neutral winds. Thermospheric wind measurements are critically needed for space weather research. HiWind was launched June 14, 2011 from Kiruna, Sweden.

Mauna Loa Solar Observatory

The Mauna Loa Solar Observatory (MLSO) has been operating since the mid-1960s, providing a nearly-continuous record of solar data to the community. MLSO data includes white light corona, emission corona, H-alpha (disk and limb), He-I, and photometric.

The Community Spectro-polarimetric Analysis Center (CSAC)

CSAC provides a suite of community resource tools for analysis of the precision polarization data for remote sensing of magnetic fields in the outer solar atmosphere.

Collaborating with Fudan University

HAO Senior Scientist Philip Judge spent three weeks at China's Fudan University in October 2015. As an official Visiting Researcher, Philip worked with his host Roger Hutton, and recent graduate Wenxian Li, on magnetically sensitive emission lines formed in the solar corona.

Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR)

CEDAR is a national and international research program, sponsored by the National Science Foundation, to study the Earth's upper atmosphere. The emphasis is on the energetic and dynamical processes that determine the composition and structure of the atmosphere, and the coupling between different regions.

Preparing for the 2017 total Eclipse

On 21 August 2017 a total solar eclipse will pass across the continental United States, from Oregon on the west coast to South Carolina on the east. The eclipse will be a phenomenal experience for the millions of people who see it, but it also offers a unique opportunity to conduct scientific research of the solar atmosphere.

The Community Spectro-polarimetric Analysis Center (CSAC)

CSAC provides a suite of community resource tools for analysis of the precision polarization data for remote sensing of magnetic fields in the outer solar atmosphere.

A TIEGCM Simulation of the Anomalous Electron Heating Effect on the E-region Ionosphere

In the ionospheric E-region, the electrons are magnetized because their frequency of rotation around the magnetic field is much greater than their frequency of collisions with the neutrals. Thus, the electrons drift mostly perpendicular to the electric fields.

CME Initiation, Evolution, and Interplanetary Consequences

HAO scientists have carried out 3D isothermal MHD simulations of the evolution of the large scale coronal magnetic field as a twisted magnetic flux tube is driven (slowly) through the lower boundary into a pre-existing coronal arcade field.

Coronal and Heliospheric Evolution

The magnetic field in the Sun's atmosphere continuously evolves through processes of emergence, diffusion, and reconnection, resulting in ongoing reorganizations of the global coronal/helio- spheric magnetic morphology, as well as in the slow buildup of magnetic energy in twisted or sheared magnetic fields.

Impact of Energetic Particles on the upper Atmosphere

Energetic particles, namely electrons and protons, released from the magnetosphere cover a wide range of energies from a few electron volts (eV) to hundreds of milli-electron volts (MeV).

Long-Term Solar Variability

HAO scientists pursue an interdisciplinary, system-wide view on the origins and impacts of solar and stellar cycle variation, with a particular focus on magnetic minima as times of low activity and relatively simple heliospheric structure.

Magnetic Flux Emergence

Understanding the process of magnetic flux emergence through the solar convection zone is crucial for understanding the link between the observed magnetic activities at the surface and the dynamo-generated magnetic fields in the interior.

Modeling high-speed flows in the Earth’s Magnetotail

The magnetosphere is created by the interaction between the solar wind and the Earth’s magnetic field. On the dayside of the Earth pressure from the solar wind compresses the Earth’s dipole magnetic field and on the night side this interaction stretches it out forming a region of space commonly referred to as the magnetotail.

Satellite Drag Physical Modeling for Transition to Operations

The ionosphere and upper atmosphere play a major role in space operations, including communications, navigation, and satellite drag. Satellite drag, the drag force exerted by the tenuous upper atmosphere on orbiting bodies, is the leading cause of error in predicting the locations of objects in low-Earth orbit.

Solar Convecton and Mean Flows

Any inquiry into the ultimate origins of solar magnetic activity must soon confront turbulent thermal convection. Convection is a means by which the Sun shines. Energy liberated by nuclear fusion deep in the core of the Sun filters outward by the diffusion of photons.

Studying Atmosphere Coupling Using Mesoscale-resolving WACCM

An important pathway for the terrestrial weather to affect the space weather is through atmosphere waves, such as atmospheric tides, planetary waves and gravity waves. The impacts of the planetary-scale waves have been extensively studied observationally and numerically.

Sunspots and Photospheric Dynamics

Sunspots are the most prominent manifestations of magnetic field in the visible layers of the solar atmosphere. Their origin is a dynamo process operating in the solar convection zone.

The Sun as a Dynamo

The ultimate origins of solar variability lie below the visible surface, where turbulent convection, differential rotation, and meridional flows work together to produce magnetic fields through the operation of a stellar dynamo, giving rise to the 22-year solar magnetic cycle.