Skip to main content

Main navigation

U.S. NSF Logo
NSF NCAR Logo
Contact Us
High Altitude Observatory
  • Home
  • About
    • HAO News
    • History of HAO
    • People
    • Visitor Program
    • Partnerships
    • Organizational Chart
    • Strategic Plan
    • External Advisory Committees
    • Internal Advisory Committees
    • Information for Staff/Visitors
    • Computer Support
  • Research
    • Research Highlights
    • Science Topics
  • Modeling
    • Assimilative Mapping of Ionospheric Electrodynamics (AMIE)
    • Coupled Magnetosphere Ionosphere Thermosphere Model (CMIT)
    • Data-Optimized Coronal Field Model (DOCFM)
    • FORWARD
    • The GLobal airglOW Model (GLOW)
    • Global Scale Wave Model (GSWM)
    • Lyon-Fedder-Mobarry (LFM) code
    • MURaM Sunspot Model Output
    • TIEGCM
    • WACCM-X
    • Living With A Star Focus Team
  • Observation
    • Mauna Loa Solar Observatory
    • COSMO
    • Community Spectro-polarimetric Analysis Center
    • Fabry-Perot Interferometers
    • HAO Eclipses
    • McIntosh Synoptic Map Archive
    • NCAR Vacuum Tunnel Facility
    • Solar Maximum Mission
    • The Sun Today
    • WindCube
    • LFDI
  • Education
    • The Sun: A Pictorial Introduction
    • Questions and Answers About the Sun
    • Solar Physics Historical Timeline
    • Famous Solar-Stellar Scientists
    • Solar Astronomy in the Prehistoric Southwest
    • Suggested Reading
    • Additional Educational Resources
  • News & Events
    • News
    • All Upcoming Events
    • Past Events
Contact Us

Multiwavelength High-resolution Observations of Chromospheric Swirls in the Quiet Sun

Selected swirling events

Spectropolarimetric Insight into Plasma-Sheet Dynamics of a Solar Flare

Intensity and polarization data surrounding the current sheet formed on Sept 10 2017

Some thoughts on emission-line spectroscopy

Emission line data from IRIS are shown in the top panel. The lower panel lists an expression for the ratio of the emission lines shown of SI and O, under a minimal number of assumptions which often exceed the number of independent data points

Neutral hydrogen, helium and solar and stellar coronae

Line profiles of He I and He II resonance lines are shown as a function of wavelength (and equivalent Doppler shift) and time, computed from a coronal initial state

On the Cores of Resonance Lines Formed in the Sun's Chromosphere

A comparison of 1D and 3D calculations of the brightness of Ca II K (top row), Mg II k (middle row) and H Lα (bottome row), computed as for the k line images, at the Doppler shifts shown

On single-point inversions of magnetic dipole lines in the corona

scattering geometry of point P is shown in the observer's frame with projections of the magnetic field components in this frame

Magnetic structure of the solar chromosphere-corona transition regions

Edge-enhanced images from near the core of the Mg II k line

Measuring the magnetic origins of solar flares, CMEs and Space Weather

A smoothed UV spectrum of α alpha Cen A, obtained by the Hubble Space Telescope

Atomic structure calculations of Land ́e g factors of astrophysical interest with direct applications for solar coronal magnetometry

The enduring mystery of the solar corona

Pagination

  • Previous page ‹‹
  • Page 3
Subscribe to Phil Judge

NSF NCAR

  • NSF NCAR Homepage
  • ACOM | Atmospheric Chemistry Observations & Modeling
  • CGD Laboratory
  • CISL | Computational & Information Systems
  • EdEC | Education, Engagement & Early-Career Development
  • EOL | Earth Observing Laboratory
  • HAO | High Altitude Observatory
  • MMM | Mesoscale & Microscale Meteorology
  • RAL | Research Applications Laboratory

UCAR

  • UCAR Homepage
  • Community Programs
  • Education & Training
  • For Staff
  • Government Relations & External Engagement
  • Member Institutions
  • Tech Transfer & Engagement
  • University Collaboration

Subscribe to NCAR|UCAR News

Follow NCAR|UCAR

© 2025 UCAR

  • Privacy
  • Cookies
  • Web Accessibility
  • Terms of Use
  • Copyright Issues
  • Sponsored by U.S. NSF
  • Report Ethics Concern
  • Staff Login
Postal Address: P.O. Box 3000, Boulder, CO 80307-3000 • Shipping Address: 3090 Center Green Drive, Boulder, CO 80301
NSF Logo

This material is based upon work supported by the NSF National Center for Atmospheric Research, a major facility sponsored by the U.S. National Science Foundation and managed by the University Corporation for Atmospheric Research. Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the U.S. National Science Foundation.