Skip to main content

Main navigation

U.S. NSF Logo
NSF NCAR Logo
Contact Us
High
Altitude Observatory
  • Home
  • About
    • HAO News
    • History of HAO
    • People
    • Visitor Program
    • Partnerships
    • Organizational Chart
    • Strategic Plan
    • External Advisory Committees
    • Internal Advisory Committees
    • Information for Staff/Visitors
    • Computer Support
  • Research
    • Research Highlights
    • Science Topics
  • Modeling
    • Assimilative Mapping of Ionospheric Electrodynamics (AMIE)
    • Coupled Magnetosphere Ionosphere Thermosphere Model (CMIT)
    • Data-Optimized Coronal Field Model (DOCFM)
    • FORWARD
    • The GLobal airglOW Model (GLOW)
    • Global Scale Wave Model (GSWM)
    • Lyon-Fedder-Mobarry (LFM) code
    • MURaM Sunspot Model Output
    • TIEGCM
    • WACCM-X
    • Living With A Star Focus Team
  • Observation
    • Mauna Loa Solar Observatory
    • COSMO
    • Community Spectro-polarimetric Analysis Center
    • Fabry-Perot Interferometers
    • HAO Eclipses
    • McIntosh Synoptic Map Archive
    • NCAR Vacuum Tunnel Facility
    • Solar Maximum Mission
    • The Sun Today
    • WindCube
    • LFDI
  • Education
    • The Sun: A Pictorial Introduction
    • Questions and Answers About the Sun
    • Solar Physics Historical Timeline
    • Famous Solar-Stellar Scientists
    • Solar Astronomy in the Prehistoric Southwest
    • Suggested Reading
    • Additional Educational Resources
  • News & Events
    • News
    • All Upcoming Events
    • Past Events
Contact Us

First Observation of Chromospheric Waves in a Sunspot by DKIST/ViSP

Chromospheric Waves in a Sunspot by DKISTViSP

On the (In)stability of Sunspots

Maps of the magnetic field strength at depth of z = −7.5 Mm beneath the solar photosphere at different times (indicated in red in each panel)

Annie Maunder, A Pioneer of Solar Astronomy

Annie Maunder

Great Grandson of Walter & Annie Maunder Thanks HAO

Annie Maunder's birthday book and her formal portrait

Opposite Polarity Magnetic Fields and Convective Downflows in a Simulated Sunspot Penumbra

Sunspot simulations

A distinct magnetic property of the inner penumbral boundary III. Analysis of simulated sunspots

Radial profiles of continuum intensity (b), magnetic field inclination (c), total magnetic field strength (d), vertical magnetic field strength (e), and horizontal magnetic field strength (f)

Superstrong photospheric magnetic fields in sunspot penumbrae

A portion of the inner penumbra in the MURaM sunspot simulation by Rempel (2015) with some filaments hosting a counter-Evershed flow (see also Siu-Tapia et al. 2018)
Subscribe to sunspots

NSF NCAR

  • NSF NCAR Homepage
  • ACOM | Atmospheric Chemistry Observations & Modeling
  • CGD Laboratory
  • CISL | Computational & Information Systems
  • EdEC | Education, Engagement & Early-Career Development
  • EOL | Earth Observing Laboratory
  • HAO | High Altitude Observatory
  • MMM | Mesoscale & Microscale Meteorology
  • RAL | Research Applications Laboratory

UCAR

  • UCAR Homepage
  • Community Programs
  • Education & Training
  • For Staff
  • Government Relations & External Engagement
  • Member Institutions
  • Tech Transfer & Engagement
  • University Collaboration

Subscribe to NCAR|UCAR News

Follow NCAR|UCAR

© 2025 UCAR

  • Privacy
  • Cookies
  • Web Accessibility
  • Terms of Use
  • Copyright Issues
  • Sponsored by U.S. NSF
  • Report Ethics Concern
  • Staff Login
Postal Address: P.O. Box 3000, Boulder, CO 80307-3000 • Shipping Address: 3090 Center Green Drive, Boulder, CO 80301
NSF Logo

This material is based upon work supported by the NSF National Center for Atmospheric Research, a major facility sponsored by the U.S. National Science Foundation and managed by the University Corporation for Atmospheric Research. Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the U.S. National Science Foundation.