Skip to main content

Main navigation

U.S. NSF Logo
NSF NCAR Logo
Contact Us
High Altitude Observatory
  • Home
  • About
    • HAO News
    • History of HAO
    • People
    • Visitor Program
    • Partnerships
    • Organizational Chart
    • Strategic Plan
    • External Advisory Committees
    • Internal Advisory Committees
    • Information for Staff/Visitors
    • Computer Support
  • Research
    • Research Highlights
    • Science Topics
  • Modeling
    • Assimilative Mapping of Ionospheric Electrodynamics (AMIE)
    • Coupled Magnetosphere Ionosphere Thermosphere Model (CMIT)
    • Data-Optimized Coronal Field Model (DOCFM)
    • FORWARD
    • The GLobal airglOW Model (GLOW)
    • Global Scale Wave Model (GSWM)
    • Lyon-Fedder-Mobarry (LFM) code
    • MURaM Sunspot Model Output
    • TIEGCM
    • WACCM-X
    • Living With A Star Focus Team
  • Observation
    • Mauna Loa Solar Observatory
    • COSMO
    • Community Spectro-polarimetric Analysis Center
    • Fabry-Perot Interferometers
    • HAO Eclipses
    • McIntosh Synoptic Map Archive
    • NCAR Vacuum Tunnel Facility
    • Solar Maximum Mission
    • The Sun Today
    • WindCube
    • LFDI
  • Education
    • The Sun: A Pictorial Introduction
    • Questions and Answers About the Sun
    • Solar Physics Historical Timeline
    • Famous Solar-Stellar Scientists
    • Solar Astronomy in the Prehistoric Southwest
    • Suggested Reading
    • Additional Educational Resources
  • News & Events
    • News
    • All Upcoming Events
    • Past Events
Contact Us

Assimilation of Ionosphere Observations in the Whole Atmosphere Community Climate Model with thermosphere-ionosphere eXtension (WACCMX)

(a) Root mean square error and (b) bias in WACCMX+DART experiments compared to ground-based Global Navigation Satellite System (GNSS) total electron content observations for the 1 hr forecast (F) and analysis (A)

Statistical Dependence of EMIC Wave Scattering on Wave and Plasma Parameters

H+ band Electromagnetic Ion Cyclotron (EMIC) waves produce loss of relativistic electrons as seen by two Van Allen Probes spacecraft separated along orbit by ~ 1 hour during June 2015 storm (Qin et al., 2019)

Equatorial Ionospheric Electrodynamics

Height variation of quiet time evening vertical drifts over Jicamarca for moderate solar flux conditions(after Fejer et al., 2014)

Comparison of GOLD nighttime measurements with total electron content: preliminary results

The comparison between the GOLD map and TEC2 map on DOY 72 in 2019 23:10-23:40 (top) and 23:55-24:25 (bottom)

The 2‐D Evolution of Thermospheric ∑O/N2 Response to Weak Geomagnetic Activity During Solar‐Minimum Observed by GOLD

(top) The Kp and Dst index of three cases (DOY 145 to 148; DOY 153 to 156; DOY 162 to 165); (middle) latitude-longitude distribution of ∑O/N2 percentage difference between two quiet days in three cases; (bottom) percentage difference of ∑O/N2 between disturbed and quiet days in three cases. Corresponding local time is marked on longitude interval

Formation of Double Tongues of Ionization During the 17 March 2013 Geomagnetic Storm

Polar maps of the simulated electron density at pressure level 2 (~300 km) in the Northern Hemisphere as a function of geographic latitude and local time on 17 March 2013

Dipolar elementary current systems for ionospheric current reconstruction at low and middle latitudes

Maps of the E-region horizontal and radial currents for 18 March 2016 at 11:22 UT

Sudden Stratospheric Warmings

Observations of ionospheric behavior during the 2009 SSW event

Alfvénic thermospheric upwelling in a global geospace model

Air density in the northern hemisphere on 27 March 2003 when CHAMP passes through the edge of a high-latitude density enhancement

Day-to-Day Variability of Diurnal Tide in the Mesosphere and Lower Thermosphere Driven From Below

Daily values of migrating diurnal tidal amplitudes (left panel) and phases (right panel) at 1E-2 hPa (80 km) from the novel multiple satellite analysis method described in this paper (upper panel), NOGAPS-ALPHA (middle panel), and WACCM-X (lower panel)

Pagination

  • Previous page ‹‹
  • Page 3
  • Next page ››
Subscribe to Earth's upper atmosphere

NSF NCAR

  • NSF NCAR Homepage
  • ACOM | Atmospheric Chemistry Observations & Modeling
  • CGD Laboratory
  • CISL | Computational & Information Systems
  • EdEC | Education, Engagement & Early-Career Development
  • EOL | Earth Observing Laboratory
  • HAO | High Altitude Observatory
  • MMM | Mesoscale & Microscale Meteorology
  • RAL | Research Applications Laboratory

UCAR

  • UCAR Homepage
  • Community Programs
  • Education & Training
  • For Staff
  • Government Relations & External Engagement
  • Member Institutions
  • Tech Transfer & Engagement
  • University Collaboration

Subscribe to NCAR|UCAR News

Follow NCAR|UCAR

© 2025 UCAR

  • Privacy
  • Cookies
  • Web Accessibility
  • Terms of Use
  • Copyright Issues
  • Sponsored by U.S. NSF
  • Report Ethics Concern
  • Staff Login
Postal Address: P.O. Box 3000, Boulder, CO 80307-3000 • Shipping Address: 3090 Center Green Drive, Boulder, CO 80301
NSF Logo

This material is based upon work supported by the NSF National Center for Atmospheric Research, a major facility sponsored by the U.S. National Science Foundation and managed by the University Corporation for Atmospheric Research. Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the U.S. National Science Foundation.