MLSO Publications (by author)

Please use the MLSO ADS library to see publications using MLSO data:

https://ui.adsabs.harvard.edu/public-libraries/1EGyU1oMSESpEQ_SI2_p5g

The older list below is no longer being updated


This is the outdated Publication List:

Ordered by: Author | Year

1116 publications, 57 abstracts, and 260 citations as of 2021-02-12.

It is hoped that this listing will be of use to the scientific community. The current list is incomplete. If you are aware of any publications relating to Mauna Loa data which are NOT posted on this listing, please send the reference information via e-mail to: mlso_papers@ucar.edu

Publications

Aside: A list of CoMP publications can be found in the CoMP ADS Library

  1. Acton, L. W. (1996), Comparison of YOHKOH X-ray and other solar activity parameters for November 1991 to November 1995, Cool stars; stellar systems; and the sun.
  2. Al-Omari, M., R. Qahwaji, T. Colak, and S. Ipson (2010), Machine Leaning-Based Investigation of the Associations between CMEs and Filaments, Solar Physics, 262(2), 511-539, doi:10.​1007/​s11207-012-0163-x.
  3. Alexander, D., L. Rui, and R. G. Holly (2006), Hard X-Ray Production in a Failed Filament Eruption, The Astrophysical Journal, 653, 719-724, doi:10.1086/508137.
  4. Alexander, D., and C. Zhu (2012), Multi-wavelength Observations Of The Evolution Of A Multi-filament Complex, paper presented at American Astronomical Society Meeting Abstracts, 2012.
  5. Altrock, R. C., L. B. Gilliam, D. G. Sime, and R. R. Fisher (1986), The Fe XIV Solar Corona at 5303 Angstroms: An Atlas of Synoptic Charts from the Sacramento Peak Coronal Photometer, May 1973 to December 1984, NCAR Technical Note, TN-276+STR, November 1986.
  6. Altrock, R. C., and R. N. Smartt (1994), Photometric imaging observations of the emission corona, Solar Dynamic Phenomena and Solar Wind Consequences, Proceedings of the Third SOHO Workshop held 26-29 September, 1994 in Estes Park, Colorado.Edited by JJ Hunt.ESA SP-373, European Space Agency, 1994, p.425.
  7. Altschuler, M. D., and R. M. Perry (1972), On Determining the Electron Density Distribution of the Solar Corona from K-Coronameter Data, Solar Physics, 23, 410-428.
  8. Ambastha, A. (2020), Physics of the Invisible Sun: Instrumentation, Observations, and Inferences, CRC Press.
  9. Ananthakrishnan, S. (2000), Remote sensing of the heliospheric solar wind using radio astronomy methods and numerical simulations, Journal of Astrophysics and Astronomy, 21(3), 439-444.
  10. Ananthakrishnan, S., M. Tokumaru, and M. Kojima (2002), Observation of travelling interplanetary disturbances, Advances in Space Research, 29(10), 1467-1471.
  11. Andretta, V., D. Telloni, and G. Del Zanna (2012), Coronal Diagnostics from Narrowband Images Around 30.4 nm, Solar Physics, 1-21, doi:10.1007/s11207-012-9974-z.
  12. Andrews, M. D., and R. A. Howard (2001), A two-Type Classification of Lasco Coronal Mass Ejection, Space Science Reviews, 95(Numbers 1-2 / January).
  13. Andries, J., and P. S. Cally (2011), On the Dispersion and Scattering of Magnetohydrodynamic Waves by Longitudinally Stratified Flux Tubes, The Astrophysical Journal, 743, 164, doi:10.1088/0004-637x/743/2/164.
  14. Antolin, P., and K. Shibata (2010), The role of torsional Alfven waves in coronal heating, The Astrophysical Journal, 712, 494, doi:10.1088/0004-637x/712/1/494.
  15. Antolin, P., K. Shibata, M. Carlsson, L. R. van der Voort, G. Vissers, and V. Hansteen (2012), Implications for Coronal Heating from Coronal Rain, paper presented at Astronomical Society of the Pacific Conference Series.
  16. Appourchaux, T., C. Fröhlich, B. Andersen, G. Berthomieu, W. Chaplin, Y. Elsworth, W. Finsterle, D. Gough, J. Hoeksema, and G. Isaak (2000), Observational upper limits to low-degree solar g-modes, The Astrophysical Journal, 538(1), 401.
  17. Appourchaux, T., and V. T. The (1998), Results from the Luminosity Oscillations, ESA-SP-418, Noordwijk: ESA Publications Division, 1998.
  18. Archuleta, S., and R. Beutner (1988), Integrated Analysis Package for Mk-III K-Coronameter Observations: A User's Manual, NCAR Technical Note, TN-318+IA, July 1988.
  19. Ariste, A. L., M. Luna, I. Arregui, E. Khomenko, and M. Collados (2015), On the nature of transverse coronal waves revealed by wavefront dislocations, Astronomy & Astrophysics, 579, A127, doi:10.1051/0004-6361/201424340.
  20. Armstrong, J. D. (2004), Structure and Energy Transport of the Solar Convection Zone.
  21. Aschwanden, M. (2009), The 3D Geometry, 3D Motion, and Hydrodynamics of Oscillating Coronal Loops, Space Science Reviews, 149(1-4), 31-64, doi:10.1007/s11214-009-9505-x.
  22. Aschwanden, M. J. (2007), Fundamental physical processes in coronae: Waves, turbulence, reconnection, and particle acceleration, Proceedings of the International Astronomical Union, 3(S247), 257-268, doi:10.1017/s1743921308014956.
  23. Aschwanden, M. J., M. Gošic, N. E. Hurlburt, and E. Scullion (2018), Convection-driven Generation of Ubiquitous Coronal Waves, The Astrophysical Journal, 866(1), 73, doi:10.3847/1538-4357/aae08b.
  24. Atoum, I. A., and M. Ali (2017), Adaptive Technique for Merging Broken Filaments in H-\upalpha Solar Images Using Machine Learning Techniques, Arabian Journal for Science and Engineering, 42(2), 787-792, doi:10.1007/s13369-016-2328-7.
  25. Attrill, G. D. R., L. K. Harra, L. Driel-Gesztelyi, and M. J. Wills-Davey (2010), Revealing the Fine Structure of Coronal Dimmings and Associated Flows with Hinode/EIS. Implications for Understanding the Source Regions of Sustained Outflow Following CMEs, Solar Physics, 264(1), 119-147, doi:10.1007/s11207-010-9558-8.
  26. Auchere, F., E. Soubri‚, K. Bocchialini, and F. LeGall (2008), FESTIVAL: A Multiscale Visualization Tool for Solar Imaging Data, Solar Physics, 248(2), 213-224, doi:10.1007/s11207-008-9163-2.
  27. Aurass, H. (1996), Coronal Mass Ejections and Type II Radio Bursts, to appear in Lecture Notes in Physics, Proc.of the CESRA Worshop Coronal Physics from Radio and Space Observations, June 3-7, 1996, Nouan le Fuzelier, France.
  28. Aurass, H., A. Vourlidas, M. D. Andrews, B. J. Thompson, R. H. Howard, and G. Mann (1999), Nonthermal Radio Signatures of Coronal Disturbances with and without Coronal Mass Ejections, The Astrophysical Journal, 511, 451-465.
  29. B Forland, S. G., J. Dove, TA Kucera (2014), FORWARD Codes: Now with Widget!, paper presented at IAU Symposium - Nature of Prominences and their role in Space Weather, Cambridge Univ Press.
  30. Bagenal, F., and S. Gibson (1991), Modeling the Large-Scale Structure of the Solar Corona, Journal of Geophysical Research, 96, (A10), 17663-17674.
  31. Bagenal, F., and S. J. Lipscy (1999), Role of Eruptive Prominences in Dynamics of Coronal Mass Ejections, 1999.
  32. Bahcall, J. N. Solar Neutrinos: Where We Are, Chicago, River Edge, NJ: World Scientific, 1996.
  33. Bahcall, J. N., S. Basu, and P. Kumar (1997a), Localized Helioseismic Constraints on Solar Structure, ApJ, 485, L91.
  34. Bahcall, J. N., M. H. Pinsonneault, and S. Basu (2001), Solar Models: Current Epoch and Time Dependences, Neutrinos, and Helioseismological Properties, ApJ, 555, 990.
  35. Bahcall, J. N., M. H. Pinsonneault, S. Basu, and J. Christensen-Dalsgaard (1997b), Are Standard Solar Models Reliable?, Physical Review Letters, 78, 2, 171.
  36. Bak-Steslicka, U., S. E. Gibson, Y. Fan, C. Bethge, B. Forland, and L. A. Rachmeler (2013a), The Magnetic Structure of Solar Prominence Cavities: New Observational Signature Revealed by Coronal Magnetometry, Astrophysical Journal Letters, 770(2), 5, doi:10.1088/2041-8205/770/2/l28.
  37. Bak-Steslicka, U., S. E. Gibson, Y. Fan, C. Bethge, B. Forland, and L. A. Rachmeler (2014), The spatial relation between EUV cavities and linear polarization signatures, paper presented at IAU Symposium.
  38. Bak-Steslicka, U., S. Kolomanski, and T. Mrozek (2011), Coronal mass ejections associated with LDE flares of slow rise phase, Arxiv preprint arXiv:1104.0846, Central European Astrophysical Bulletin, 135-144.
  39. Bak-Steslicka, U., S. Kołomański, and T. Mrozek (2013b), Coronal Mass Ejections Associated with Slow Long Duration Flares, Solar Physics, 1-13, doi:10.1007/s11207-013-0251-6.
  40. Bak-Stȩślicka, U., S. E. Gibson, Y. Fan, C. Bethge, B. Forland, and L. A. Rachmeler (2013), The spatial relation between EUV cavities and linear polarization signatures, paper presented at Proceedings of the International Astronomical Union - Nature of Prominences and their role in Space Weather.
  41. Balasubramaniam, K. S., and A. Pevtsov (2012), Ground Based Synoptic Instrumentation for Solar Observations (Postprint), doi:10.1117/12.892824.
  42. Balasubramaniam, K. S., A. A. Pevtsov, E. W. Cliver, S. F. Martin, and O. Panasenco (2011), The Disappearing Solar Filament of 2003 June 11: A Three-body Problem, The Astrophysical Journal, 743, 202, doi:10.1088/0004-637x/743/2/202.
  43. Ballai, I., and B. Orza (2012), Transverse kink oscillations of expanding coronal loops, Astronomy & Astrophysics, 545, A118.
  44. Balogh, A., V. Bothmer, N. U. Crooker, R. J. Forsyth, G. Gloeckler, A. Hewish, M. Hilchenbach, R. Kallenbach, B. Klecker, and J. A. Linker (1999), The Solar Origin of Corotating Interaction Regions and Their Formation in the Inner Heliosphere, Space Science Reviews, 89(1), 141-178.
  45. Banerjee, D., S. K. Prasad, V. Pant, J. McLaughlin, P. Antolin, N. Magyar, L. Ofman, H. Tian, T. Van Doorsselaere, and I. De Moortel (2020), MHD Waves in open coronal structures, arXiv preprint arXiv:2012.08802.
  46. Bao, X., H. Zhang, J. Lin, Y. Jiang, and L. Li (2007a), Evolution of coronal mass ejections in the early stage, Advances in Space Research, 39(12), 1847-1852, doi:10.1016/j.asr.2007.02.055.
  47. Bao, X., H. Zhang, J. Lin, and G. A. Stenborg (2007b), Coronal mass ejections and the associated activities on the solar disk observed on October 26, 2003, A&A, 463 1, 321-331, doi:10.1051/0004-6361:20065471.
  48. Bao, X. M., H. Q. Zhang, and J. Lin (2006), Formation of the CME Leading Edge Observed in the 2003 February 18 Event, Chinese Journal of Astronomy and Astrophysics, 6, 741.
  49. Baranyi, T., L. Győri, and A. Ludmány (2016), On-line tools for solar data compiled at the Debrecen observatory and their extensions with the Greenwich sunspot data, Solar Physics, 291(9), 3081-3102.
  50. Bastian, T. (2013), A view from the ground: Next generation instrumentation for solar and heliospheric physics, paper presented at AIP Conference Proceedings - Solar Wind 13: Proceedings of the Thirteenth International Solar Wind Conference.
  51. Basu, S. (1997), The Seismic Sun, paper presented at Sounding Solar and Stellar Interiors, IAU Symposium 181, Sept. 30-Oct. 3, 1996, Nice, Dordrecht: Kluwer, 1997.
  52. Basu, S., W. J. Chaplin, J. Christensen-Dalsgaard, Y. Elsworth, G. R. Isaak, R. New, J. Schou, M. J. Thompson, and S. Tomczyk (1997a), Solar Internal Sound Speed as Inferred from Combined BiSON and LOWL Oscillation Frequencies, 1997.
  53. Basu, S., and J. Christensen-Dalsgaard (1997), Equation of state and helioseismic inversions, A&A, 322, 5-5.
  54. Basu, S., J. Christensen-Dalsgaard, J. Schou, M. J. Thompson, and S. Tomczyk (1995), Solar Structure Inversion with LOWL Data," in 4th SOHO Workshop: Helioseismology, Vol. 2, ESA Publication, 1995.
  55. Basu, S., J. Christensen-Dalsgaard, J. Schou, M. J. Thompson, and S. Tomczyk (1996a), Solar Structure as Revealed by 1 Year LOWL Data, Bull.Ast.Soc.India, 24, No. 2, 147.
  56. Basu, S., J. Christensen-Dalsgaard, J. Schou, M. J. Thompson, and S. Tomczyk (1996b), The Sun's Hydrostatic Structure from LOWL Data," ApJ, 460, 1064.
  57. Basu, S., J. Christensen-Dalsgaard, and M. J. Thompson (1997b), SVD preprocessing of helioseismic data for solar structure inversion, A&A, 321, 634.
  58. Basu, S., M. H. Pinsonneault, and J. N. Bahcall (2000), How Much Do Helioseismological Inferences Depend on the Assumed Reference Model?, ApJ, 529, 1084.
  59. Beckers, J. M. (1996), Comments on the Next Generation of Ground-Based Solar Telescopes, Solar Physics, 169, 431-442.
  60. Beckers, J. M., E. Leon, J. Mason, and L. Wilkins (1997), Solar Scintillometry: Calibration of Signals and its Use for Seeing Measurements, Solar Physics, 176, 23-36.
  61. Behannon, K. W., L. F. Burlaga, and A. J. Hundhausen (1983), A Comparison of Coronal and Interplanetary Current Sheet Inclinations, Journal of Geophysical Research, 88 (A10), 7837-7842.
  62. Bein, B. M., S. Berkebile-Stoiser, A. M. Veronig, M. Temmer, N. Muhr, I. Kienreich, D. Utz, and B. Vršnak (2011), Impulsive acceleration of coronal mass ejections: I. Statistics and CME source region characteristics, The Astrophysical Journal, 738(2), doi:10.1088/0004-637x/738/2/191.
  63. Bein, B. M., S. Berkebile-Stoiser, A. M. Veronig, M. Temmer, and B. Vršnak (2012), Impulsive Acceleration of Coronal Mass Ejections. II. Relation to Soft X-Ray Flares and Filament Eruptions, The Astrophysical Journal, 755(1), 44, doi:10.1088/0004-637x/755/1/44.
  64. Belik, M., M. Eva, and M. Vojtech Rusin and Milan (2004), Time-latitudinal development of the white light coronal structures over a solar cycle, Solar Phys., 224, 269-275.
  65. Bemporad, A. (2017), Exploring the Inner Acceleration Region of Solar Wind: A Study Based on Coronagraphic UV and Visible Light Data, The Astrophysical Journal, 846(86), 17pp, doi:10.3847/1538-4357/aa7de4.
  66. Bemporad, A. (2020), Coronal Electron Densities Derived with Images Acquired during the 2017 August 21 Total Solar Eclipse, The Astrophysical Journal, 904(2), 178.
  67. Bemporad, A., M. Mierla, and D. Tripathi (2011), Rotation of an erupting filament observed by the STEREO EUVI and COR1 instruments, Astronomy & Astrophysics, 531, doi:10.1051/0004-6361/201016297.
  68. Bemporad, A., G. Poletto, S. T. Suess, Y. K. Ko, S. Parenti, P. Riley, M. Romoli, and T. Z. Zurbuchen (2003), Temporal Evolution of a Streamer Complex: Coronal and in Situ Plasma Parameters, The Astrophysical Journal, 593, 1146-1163.
  69. Bemporad, A., Raymond, Poletto, and Romoli (2007), A Comprehensive Study of the Initiation and Early Evolution of a Coronal Mass Ejection from Ultraviolet and White-Light Data, The Astrophysical Journal, 655, 576-590, doi:10.1086/509569.
  70. Benna, C., S. Mancuso, S. Giordano, and L. Gioannini (2012), Plasma properties from the multi-wavelength analysis of the November 1st 2003 CME/shock event, Journal of Advanced Research, doi:10.1016/j.jare.2012.08.002.
  71. Berger, T. E., G. Slater, N. Hurlburt, R. Shine, and T. Tarbell (2010), Quiescent Prominence Dynamics Observed with the Hinode Solar Optical Telescope. I. Turbulent Upflow Plumes, The Astrophysical Journal, 716, 1288, doi:10.1088/0004-637x/716/2/1288.
  72. Berrilli, F., S. Criscuoli, V. Penza, and M. Lovric (2020), Long-term (1749-2015) Variations of Solar UV Spectral Indices, SoPh, 295(3), 38, doi:10.1007/s11207-020-01603-5.
  73. Berrilli, F., Ermolli, Florio, and Pietropaolo (1999), Average properties and temporal variations of the geometry of solar network cells, A&A, 344, 965.
  74. Berrilli, F., D. D. Moro, A. Florio, and L. Santillo (2005), Segmentation Of Photospheric And Chromospheric Solar Features, Solar Physics, 228(1), 81-95, doi:10.1007/s11207-005-5000-z.
  75. Bethge, C., H. Peter, T. J. Kentischer, C. Halbgewachs, D. F. Elmore, and C. Beck (2011), The Chromospheric Telescope, Astronomy & Astrophysics, 534, doi:10.1051/0004-6361/201117456.
  76. Bezrukov, D., B. Ryabov, N. Peterova, and N. Topchilo (2011), Sharp Changes in the Ordinary Mode Microwave Emission from a Stable Sunspot: Model Analysis, Latvian Journal of Physics and Technical Sciences, 48(2), 56-69, doi:10.2478/v10047-011-0016-7.
  77. Bezrukov, D. A., B. I. Ryabov, and K. Shibasaki (2012), Isolated Sunspot with a Dark Patch in the Coronal Emission, Baltic Astronomy, 21, 509-516.
  78. Bezrukovs, D. (2011), Recent Advances in Solar Physics at Virac: Analysis of Solar Active Regions in Microwaves, Baltic Astronomy, 20, 205-210.
  79. Bhatnagar, A., and W. Livingston (2005), Fundamentals of Solar Astronomy, World Scientific.
  80. Bi, Y., Y. C. Jiang, L. H. Yang, and R. S. Zheng (2010), Nonradial Eruption of a kinking filament observed from STEREO, New Astronomy, 16(4), 276-283, doi:10.1016/j.newast.2010.11.009.
  81. Biesecker, D. A., S. E. Gibson, D. Alexander, A. Fludra, J. T. Hoeksema, A. V. Panasyuk, and B. J. Thompson (2000), The Third Whole Sun Month Campaign - Coronal Synoptic Maps, 2000.
  82. Biesecker, D. A., B. J. Thompson, S. E. Gibson, D. Alexander, A. Fludra, N. Gopalswamy, J. T. Hoeksema, A. Lecinski, and L. Strachan (1999), The Synoptic Sun During the First Whole Sun Month Campaign: Aug 10 - Sep 8, 1996, Journal of Geophysical Research, 104 A5, 9679.
  83. Bird, M. K., M. Paetzold, P. Edenhofer, S. W. Asmar, and T. P. McElrath (1996), Coronal radio sounding with Ulysses: solar wind electron density near 0.1 AU during the 1995 conjunction, Astronomy and Astrophysics, 316, 441-448.
  84. Bisi, M. M., R. A. Fallows, A. R. Breen, and I. J. O’Neill (2010), Interplanetary scintillation observations of stream interaction regions in the solar wind, Solar Physics, 261(1), 149-172, doi:10.1007/s11207-009-9471-1.
  85. Bocchialini, K. a. J. C. V. (1996), High-Chromosphere and Low-Transition-Region Network: A Different Organization in an Equitorial Coronal Hole?, Solar Physics, 168, 37-45.
  86. Bogod, V., N. Peterova, B. Ryabov, and N. Topchilo (2015), On the recording of an emission with a reduced brightness in the region of a strong sunspot magnetic field, Cosmic Research, 53(1), 10-20, doi:10.1134/s0010952515010025.
  87. Bohlin, J. D. (1970), Solar Coronal Streamers. I: Observed Locations, General Evolution, and Classification, Solar Physics, 12, 240-265.
  88. Boothroyd, A. I., and I. J. Sackmann (2003), Our Sun. IV. The Standard Model and Helioseismology: Consequences of Uncertainties in Input Physics and in Observed Solar Parameters, ApJ, 583, 1004-1023.
  89. Bourouaine, S. (2009), Kinetic modeling of coronal loops and wave-particle interactions, Copernicus Publ.
  90. Bravo, S., T. Darnell, F. Bagenal, J. Burkepile, S. Watari, T. Watababe, D. F. Smart, M. A. Shea, P. Subramanian, and R. E. Turner (1998), CMEs Associated With Interplanetary Ejecta.
  91. Breen, A. R., P. J. Moran, C. A. Varley, W. P. Wilkinson, P. J. S. Williams, W. A. Coles, A. Lecinski, and J. Markkanen (1998), Interplanetary Scintillation Observations of Interaction Regions in the Solar Wind, Annales Geophysicae, 16 (10), 1265.
  92. Bromage, B. J. J., D. Alexander, A. Breen, J. R. Clegg, G. D. Zanna, C. DeForest, D. Dobrzycka, N. Gopalswamy, B. Thompson, and P. K. Browning (2000), Structure of a large low-latitude coronal hole, Solar Phys., 193, 181-193.
  93. Brosius, J. W. (2012), Extreme-ultraviolet Spectroscopic Observation of Direct Coronal Heating during a C-class Solar Flare, The Astrophysical Journal, 754(1), 54, doi:10.1088/0004-637x/754/1/54.
  94. Brun, A. S., S. Turck-Chieze, and P. Morel (1998), Standard Solar Models in the Light of New Helioseismic Constraints. I. The Solar Core, ApJ, 506, 913-925.
  95. Bruno, R., L. F. Burlaga, and A. J. Hundhausen (1984), K-coronameter Observations and Potential Field Model Comparison in 1976 and 1977, Journal of Geophysical Research, 89, 5381.
  96. Burkepile, J. (2010), Science Requirements of the COSMO K-Coronagraph.
  97. Burkepile, J., T. Darnell, and S. Tomczyk (2005), Mauna Loa Solar Observatory and the SSSC Great Observatory, AGU Fall Meeting Abstracts (Full), 51, 1220.
  98. Burkepile, J. T., G. de Toma, L. Sitongia, and D. Kolinski (2008), Brightness Variations in the Solar Corona, paper presented at AGU Spring Meeting Abstracts, 2008.
  99. Burkepile, J. T., A. J. Hundhausen, R. M. MacQueen, G. Detoma, J. A. Darnell, and H. R. Gilbert (2003), The Acceleration of Coronal Mass Ejections, AGU Fall Meeting Abstracts, 21, 01.
  100. Burkepile, J. T., A. J. Hundhausen, R. M. MacQueen, G. deToma, J. A. Darnell, and H. R. Gilbert (2004a), The mass content of Coronal Mass Ejections, 2004.
  101. Burkepile, J. T., A. J. Hundhausen, A. L. Stanger, O. C. St.Cyr, and J. A. Seiden (2004b), Role of projection effects on solar coronal mass ejection properties: 1. A study of CMEs associated with limb activity, J.Geophys.Res., 109, A03103.
  102. Burlaga, L. F., K. W. Behannon, S. F. Hansen, G. W. Pneuman, and W. C. Feldman (1978), Sources of Magnetic Fields in Recurrent Interplanetary Streams, Journal of Geophysical Research; 83 (A9), 4177-4185.
  103. Burlaga, L. F., A. J. Hundhausen, and X. P. Zhao (1981), The Coronal and Interplanetary Current Sheet in Early 1976, Journal of Geophysical Research; 86 (A11), 8893-8898.
  104. Butala, M. D., R. A. Frazin, and F. Kamalabadi (2004), Response of the Electron Density in the Solar Corona to Extreme Solar Events, AGU Fall Meeting Abstracts, 41, 02.
  105. Butala, M. D., R. A. Frazin, and F. Kamalabadi (2005), Three-dimensional estimates of the coronal electron density at times of extreme solar activity, Journal of Geophysical Research (Space Physics), 110, doi:10.1029/2004ja010938.
  106. Butala, M. D., F. Kamalabadi, R. A. Frazin, and Y. Chen (2008), Dynamic tomographic imaging of the solar corona, Selected Topics in Signal Processing, IEEE Journal of, 2(5), 755-766, doi:10.1109/jstsp.2008.2005352.
  107. Byrne, J. P., H. Morgan, D. B. Seaton, H. M. Bain, and S. R. Habbal (2014), Bridging EUV and White-Light Observations to Inspect the Initiation Phase of a “Two-Stage” Solar Eruptive Event, Solar Physics, 289(12), 4545-4562, doi:10.1007/s11207-014-0585-8.
  108. Bąk-Stȩślicka, U., S. E. Gibson, and E. Chmielewska (2016), Line-of-Sight Velocity As a Tracer of Coronal Cavity Magnetic Structure, Frontiers in Astronomy and Space Sciences, 3(7), doi:10.3389/fspas.2016.00007.
  109. Cally, P. S., and S. C. Hansen (2011), Benchmarking Fast-to-Alfven Mode Conversion in a Cold MHD Plasma, Arxiv preprint arXiv:1105.5754, doi:10.1088/0004-637x/738/2/119.
  110. Canuto, V. M., and J. Christensen-Dalsgaard (1998), Turbulence in Astrophysics: Stars, Annual Review of Fluid Mechanics, 30, 167-198.
  111. Capobianco, G., S. Fineschi, G. Massone, E. Balboni, A. Malvezzi, G. Crescenzio, L. Zangrilli, P. Calcidese, E. Antonucci, and M. Patrini (2012), Electro-optical polarimeters for ground-based and space-based observations of the solar K-corona, paper presented at SPIE Astronomical Telescopes+ Instrumentation, International Society for Optics and Photonics.
  112. Cargill, P. J. (2009), Coronal magnetism: difficulties and prospects, The Origin and Dynamics of Solar Magnetism - Space Science Reviews, 144(1-4), 413-421, doi:10.1007/s11214-008-9446-9.
  113. Casini, R., S. M. White, and P. G. Judge (2017), Magnetic Diagnostics of the Solar Corona: Synthesizing Optical and Radio Techniques, Space Science Reviews, 210(1), 145-181, doi:10.1007/s11214-017-0400-6.
  114. Caspi, A., D. B. Seaton, C. C. Tsang, C. E. DeForest, P. Bryans, E. E. DeLuca, S. Tomczyk, J. T. Burkepile, T. Casey, and J. Collier (2020), A new facility for airborne solar astronomy: NASA's WB-57 at the 2017 total solar eclipse, arXiv, arXiv: 2004.09658.
  115. Centrone, M., I. Ermolli, and F. Giorgi (2005), Image processing for the Arcetri Solar Archive, Mem. S.A.It, 76, 941.
  116. Chalmers, J. W. (1985), A User's Guide for the MK-III K-Coronameter Data System, NCAR Technical Note, TN-247+1A, 17 pp.
  117. Chandran, B. D. G., T. J. Dennis, E. Quataert, and S. D. Bale (2011), Incorporating Kinetic Physics into a Two-fluid Solar-wind Model with Temperature Anisotropy and Low-frequency Alfvén-wave Turbulence, The Astrophysical Journal, 743, 197, doi:10.1088/0004-637X/743/2/197; eprintid: arXiv:1110.3029.
  118. Chaplin, W. J., J. Christensen-Dalsgaard, Y. Elsworth, R. Howe, G. R. Isaak, R. M. Larsen, R. New, J. Schou, M. J. Thompson, and S. Tomczyk (1999), Rotation of the Solar Core from BiSON and LOWL Frequency Observations," MNRAS, 308, Issue 2, 405.
  119. Chaplin, W. J., J. Christensen-Dalsgaard, Y. Elsworth, R. Howe, G. R. Isaak, R. New, J. Schou, M. J. Thompson, and S. Tomczyk (1998), Rotation of the Solar Core, Nice: Obs. de la Cote d'Azur, 1998.
  120. Chapman, G. A., S. R. Walton, G. deToma, and O. R. White (2001), Comparison of Solar Photometric Data from Two Telescopes, 2001.
  121. Charbonneau, P., J. Christensen-Dalsgaard, R. Henning, R. M. Larsen, J. Schou, M. J. Thompson, and S. Tomczyk (1999), Helioseismic Constraints on the Structure of the Solar Tachocline, ApJ, 527, 445-460.
  122. Charbonneau, P., J. C. Dalsgaard, R. Henning, J. Schou, M. J. Thompson, and S. Tomczyk (1998a), Observational Constraints on the Dynamical Properties of the Shear Layer at the Base of the Solar Convection Zone, Nice: Obs. de la Cote d'Azur, 1998.
  123. Charbonneau, P., and S. Tomczyk (1997), Helioseismology by Genetic Forward Modeling, in 12th Kingston Meeting: Computational Astrophysics, ASP Conference Series, 123, Oct. 17-19, 1996, Halifax, San Francisco: Astronomical Society of the Pacific, 1997.
  124. Charbonneau, P., S. Tomczyk, J. Schou, and M. J. Thompson (1998b), The Rotation of the Solar Core Inferred by Genetic Forward Modeling, The Astrophysical Journal, 496, 1015-1030.
  125. Chatterjee, S., S. Mandal, and D. Banerjee (2017), Variation of Supergranule Parameters With Solar Cycles: Results From Century-Long Kodaikanal Digitized Ca II K Data, The Astrophysical Journal, 841(2), 70, doi:10.3847/1538-4357/aa709d.
  126. Chatzistergos, T., I. Ermolli, N. Krivova, S. Solanki, D. Banerjee, T. Barata, M. Belik, R. Gafeira, A. Garcia, and Y. Hanaoka (2020a), VizieR Online Data Catalog: Plage area composite series (Chatzistergos+, 2020), VizieR Online Data Catalog, J/A+ A/639/A688.
  127. Chatzistergos, T., I. Ermolli, N. A. Krivova, S. K. Solanki, D. Banerjee, T. Barata, M. Belik, R. Gafeira, A. Garcia, and Y. Hanaoka (2020b), Analysis of full-disc Ca II K spectroheliograms-III. Plage area composite series covering 1892–2019, Astronomy & Astrophysics, 639, A88, doi:10.1051/0004-6361/202037746.
  128. Chen, A. Q., P. F. Chen, and C. Fang (2006), On the CME velocity distribution, A&A, 456, 1153-1158, doi:10.1051/0004-6361:20065378.
  129. Chen, H. D., Y. C. Jiang, and S. L. Ma (2008a), Observations of H surges and ultraviolet jets above satellite sunspots, Astronomy and Astrophysics, 478(3), 907-913, doi:10.1051/0004-6361:20078641.
  130. Chen, J. (1997), Coronal Mass Ejections: Causes and Consequences. A Theoretical View, in Coronal Mass Ejections: Causes and Consequences, Geophysical Monograph -- American Geophysical Union, 99.
  131. Chen, J. (2001a), Acceleration and Propagation of Flux-Rope CMEs: Theory and Observations, APS Meeting Abstracts, 4005.
  132. Chen, J. (2001b), Physics of Coronal Mass Ejections: A New Paradigm of Solar Eruptions, Space Science Reviews, 95(1), 165-190.
  133. Chen, J. (2017), Physics of erupting solar flux ropes: Coronal mass ejections (CMEs)---Recent advances in theory and observation, Physics of Plasmas, 24(9), doi:10.1063/1.4993929.
  134. Chen, J., and J. Krall (1999), Theory of Coronal Mass Ejctions: A New Paradigm, APS Meeting Abstracts.
  135. Chen, J., R. A. Santoro, J. Krall, R. A. Howard, R. Duffin, J. D. Moses, G. E. Brueckner, J. A. Darnell, and J. T. Burkepile (2000), Magnetic Geometry and Dynamics of the Fast Coronal Mass Ejection of 1997 September 9, Astrophysical Journal, 533, 481-500, doi:10.1086/308646.
  136. Chen, P., D. Innes, and S. Solanki (2008b), SOHO/SUMER observations of prominence oscillation before eruption, Astronomy & Astrophysics, 484(2), 487-493.
  137. Chen, P. F. (2009), The Relation Between EIT Waves and Coronal Mass Ejections, Astrophysical Journal, 698, L112-L115, doi:10.1088/0004-637X/698/2/L112; eprintid: arXiv:0905.3272.
  138. Chen, P. F., and C. Fang (2004), EIT Waves - A Signature of Global Magnetic Restructuring in CMEs, Proceedings of the International Astronomical Union, 2004, 55-64.
  139. Chen, Y. (2013), A review of recent studies on coronal dynamics: Streamers, coronal mass ejections, and their interactions, Chinese Science Bulletin, 58(14), 1-26, doi:10.1007/s11434-013-5669-6.
  140. Chen, Y., H. Tian, Y. Su, Z. Qu, L. Deng, P. R. Jibben, Z. Yang, J. Zhang, T. Samanta, and J. He (2018), Diagnosing the magnetic field structure of a coronal cavity observed during the 2017 total solar eclipse, The Astrophysical Journal, 856(1), 21, doi:10.3847/1538-4357/aaaf68.
  141. Cheng, X., Y. Li, L. Wan, M. Ding, P. Chen, J. Zhang, and J. Liu (2018), Observations of Turbulent Magnetic Reconnection within a Solar Current Sheet, The Astrophysical Journal, 866(1), 64, doi:10.3847/1538-4357/aadd16.
  142. Chertok, I. M. (2000), Solar large-scale emitting chains: some CME-associated events, Journal of Atmospheric and Solar-Terrestrial Physics, 62(16), 1545-1551.
  143. Chertok, I. M. (2001), Solar Large-Scale Emitting Chains: Evidence of Reality and Some Properties, Solar Physics, 198(2), 367-383.
  144. Chertok, I. M., E. I. M. Obridko, N. S. Shilova, and H. S. Hudson (2002), Solar Disappearing Filament Inside a Coronal Hole, The Astrophysical Journal, 567(2), 1225-1233.
  145. Chifor, C. D. T., and H. E. M. a. B. R. Dennis (2007), X-ray precursors to flares and filament eruptions, Astronomy & Astrophysics, 472(3), 967-979, doi:10.1051/0004-6361:20077771.
  146. Chifu, I., O. Chiricuta, D. Constantin, and C. Dumitrache (2008), Multiwavelengths study of active region 09778, paper presented at AIP Conference Proc. 1043, 2008.
  147. Chmielewska, E., and M. Tomczak (2012), Hot and cool plasma ejections in the solar corona, Arxiv preprint arXiv:1203.0783.
  148. Chmielewski, P., A. Srivastava, K. Murawski, and Z. Musielak (2014), Impulsively Generated Linear and Non-Linear Alfvén Waves in the Coronal Funnels, Acta Physica Polonica A, 125, 158-164, doi:10.12693/APhysPolA.125.158.
  149. Cho, K., J. Chae, R.-Y. Kwon, S.-C. Bong, and K.-S. Cho (2020), The Application of the Filtered Backprojection Algorithm to Solar Rotational Tomography, The Astrophysical Journal, 895(1), 55, doi:10.3847/1538-4357/ab88af.
  150. Cho, K., Y. Moon, M. Dryer, A. Shanmugaraju, C. Fry, Y. Kim, and Y. Park (2005), Examination of Type II Origin with SOHO/LASCO Observations, AGU Spring Meeting Abstracts, 23, 10.
  151. Cho, K., Y. Moon, J. Lee, M. Dryer, S. Bong, Y. Kim, and Y. Park (2006), Determination of Coronal Magnetic fields from Type II Band Splitting and Density Measurement, 2006.
  152. Cho, K.-S., N. Gopalswamy, R.-Y. Kwon, R.-S. Kim, and S. Yashiro (2013), A High-frequency Type II Solar Radio Burst Associated with the 2011 February 13 Coronal Mass Ejection, The Astrophysical Journal, 765(2), 148, doi:10.1088/0004-637x/765/2/148.
  153. Cho, K.-S., J. Lee, S.-C. Bong, Y.-H. Kim, B. Joshi, and Y.-D. Park (2009), A Coronal Mass Ejection and Hard X-Ray Emissions Associated with the Kink Instability, Astrophysical Journal, 703, 1-7, doi:10.1088/0004-637x/703/1/1.
  154. Cho, K.-S., H. Yang, J. Lee, S. Bong, S. Choi, J. Kim, J. Park, Y. Park, and Y.-H. Kim (2019), Toward Next Generation Solar Coronagraph: Diagnostic Coronagraph Experiment, The Bulletin of The Korean Astronomical Society, 44(2), 42.42-42.42, doi:10.5303/jkas.2020.53.4.87.
  155. Cho, K. S., S. C. Bong, Y. H. Kim, Y. J. Moon, M. Dryer, A. Shanmugaraju, J. Lee, and Y. D. Park (2008), Low coronal observations of metric type II associated CMEs by MLSO coronameters, Astronomy and Astrophysics, 491, 873-882, doi:10.1051/0004-6361:20079013.
  156. Cho, K. S., S. C. Bong, Y. J. Moon, A. Shanmugaraju, R. Y. Kwon, and Y. D. Park (2011), Relationship between multiple type II solar radio bursts and CME observed by STEREO/SECCHI, Astronomy & Astrophysics, 530, doi:10.1051/0004-6361/201015578.
  157. Cho, K. S., J. Lee, D. E. Gary, Y. J. Moon, and Y. D. Park (2007a), Magnetic Field Strength in the Solar Corona from Type II Band Splitting, Astrophysical Journal, 665, 799-804, doi:10.1086/519160.
  158. Cho, K. S., J. Lee, Y. J. Moon, M. Dryer, S. C. Bong, Y. H. Kim, and Y. D. Park (2007b), A study of CME and type II shock kinematics based on coronal density measurement, Astronomy and Astrophysics, 461, 1121-1125, doi:10.1051/0004-6361:20064920.
  159. Christensen-Dalsgaard, J. (1996), Helioseismology and Solar Neutrinos, River Edge, NJ: World Scientific, 1996.
  160. Christensen-Dalsgaard, J. (1997), Constraints on Stellar Interior Physics from Helioseismology, Dordrecht: Kluwer, 1997.
  161. Christensen-Dalsgaard, J. (1998), The `Standard Sun.' Modelling and Helioseismology, Space Science Reviews Kluwer: Dordrecht, 1998.
  162. Ciaravella, A., and J. C. Raymond (2008), The Current Sheet Associated with the 2003 November 4 Coronal Mass Ejection: Density, Temperature, Thickness, and Line Width, Astrophysical Journal, 686, 1372-1382, doi:10.1086/590655.
  163. Ciaravella, A., J. C. Raymond, A. v. Ballegooijen, L. Strachan, A. Vourlidas, J. Li, J. Chen, and A. Panasyuk (2003), Physical Parameters of the 2000 February 11 Coronal Mass Ejection: Ultraviolet Spectra versus White-Light Images, The Astrophysical Journal, 597, 1118-1134.
  164. Ciaravella, A., J. C. Raymond, J. Li, P. Reiser, L. D. Gardner, Y. K. Ko, and S. Fineschi (2002), Elemental abundances and post-coronal mass ejection current sheet in a very hot active region, The Astrophysical Journal, 575, 1116.
  165. Ciaravella, A., D. F. Webb, S. Giordano, and J. C. Raymond (2013), Bright Ray-like Features in the Aftermath of CMEs: White Light vs UV Spectra, The Astrophysical Journal, 766(1), 14, doi:10.1088/0004-637x/766/1/65.
  166. Cliver, E. W., and A. G. Ling (2012), The floor in the solar wind magnetic field revisited, Solar Physics, 274(1-2), 285-301, doi:10.1007/s11207-010-9657-6.
  167. Coles, W. A. (1996), A bimodal model of the solar wind speed, Astrophysics and Space Science, 243(1), 87-96.
  168. Corbard, T., G. Berthomieu, P. Morel, J. Provost, J. Schou, and S. Tomczyk (1997), Solar Internal Rotation from LOWL Data. A 2D Regularized Least-Squares Inversion Using B-Splines, Astronomy and Astrophysics Review, 324 (1), 298-310.
  169. Corbard, T., G. Berthomieu, J. Provost, and E. Fossat (1996), The solar core rotation from LOWL and IRIS or BiSON data.
  170. Corbard, T., G. Berthomieu, J. Provost, and P. Morel (1998), Inferring the Equatorial Solar Tachocline from Frequency Splittings, A&A, 330, 1149-1159.
  171. Corbard, T., F. Blanc, G. Berthomieu, and J. Provost (1999), Non-linear Regularization for Helioseismic Inversions. Application for the Study of the Solar Tachocline, A&A, 344, 696-708.
  172. Corbard, T., S. J. Jimenez-Reyes, M. J. Thompson, and S. Tomczyk (2001), Variations of the solar interior with the cycle: observational aspects, Thévenin, EdP-Sciences, Conference Series, 2001.
  173. Corbard, T., S. Jiménez-Reyes, S. Tomczyk, M. Dikpati, and P. Gilman (2000a), The Solar Cycle and the Tachocline: Theories and Observations, ESA SP-477, Noordwijk, 2002.
  174. Corbard, T., S. J. Jiménez-Reyes, S. Tomczyk, M. Dikpati, and P. Gilman (2000b), The solar tachocline and its variation, ESA SP-464, Noordwijk, 2001.
  175. Corchado-Albelo, M. F., K. Dalmasse, S. Gibson, Y. Fan, and A. Malanushenko (2021), Designing a New Coronal Magnetic Field Energy Diagnostic, The Astrophysical Journal, 907, 23, doi:10.3847/1538-4357/abc8f0.
  176. Coulter, R., Kuhn, J.R, and Rimmele (1996), Using Scintillation Measurements to Achieve High Spatial Resolution in Photometric Solar Observations, Solar Phys, 163 7.
  177. Couvidat, S., R. A. Garcia, S. Turck-Chieze, T. Corbard, C. J. Henney, and S. Jiménez-Reyes (2003a), The Rotation of the Deep Solar Layers, ApJ, 597, L77, doi:10.1086/379698.
  178. Couvidat, S., S. Turck-Chieze, R. A. Garcia, and T. Corbard (2003b), The Search for the Solar Core Dynamics with SoHO/GOLF, 2003.
  179. Cramp, J. L., M. L. Duldig, E. O. Flückiger, J. E. Humble, M. A. Shea, and D. F. Smart (1999), The 22 October 1989 Solar Cosmic Ray Enhancement: An Analysis of the Anisotropy and Spectral Characteristics, in press.
  180. Cranmer, S. R. (2010), An Efficient Approximation of the Coronal Heating Rate for Use in Global Sun-Heliosphere Simulations, The Astrophysical Journal, 710, 676, doi:10.1088/0004-637x/710/1/676.
  181. Cranmer, S. R. (2020), Heating Rates for Protons and Electrons in Polar Coronal Holes: Empirical Constraints from the Ultraviolet Coronagraph Spectrometer, The Astrophysical Journal, 900(2), 105.
  182. Cranmer, S. R., et al. (1999), An Empirical Model of a Polar Coronal Hole at Solar Minimum, The Astrophysical Journal, 511, 481-501.
  183. Cremades, H., and O. C. St. Cyr (2007), Coronal mass ejections: Solar cycle aspects, Advances in Space Research, 40(7), 1042-1048, doi:10.1016/j.asr.2007.01.088.
  184. Criscuoli, S. (2007), Radiative properties of complex magnetic elements in the solar photosphere.
  185. Criscuoli, S. (2019), Effects of continuum fudging on non-LTE synthesis of stellar spectra. I. Effects on estimates of UV continua and Solar Spectral Irradiance variability, The Astrophysical Journal, 872(1), 52, doi:10.3847/1538-4357/aaf6b7.
  186. Criscuoli, S., and I. Ermolli (2008), Stray-light restoration of full-disk CaII K solar observations: a case study, Astronomy and Astrophysics, 484(2), 591-599, doi:10.1051/0004-6361:20079046.
  187. Criscuoli, S., I. Ermolli, J. Fontenla, F. Giorgi, M. Rast, S. Solanki, and H. Uitenbroek (2010), Radiative emission of solar features in Ca II K, Arxiv preprint arXiv:1002.0244.
  188. Criscuoli, S., V. Penza, M. Lovric, and F. Berrilli (2018), The Correlation of Synthetic UV Color versus Mg ii Index along the Solar Cycle, The Astrophysical Journal, 865(1), 22, doi:10.3847/1538-4357/aad809.
  189. Criscuoli, S., M. P. Rast, I. Ermolli, and M. Centrone (2007), On the reliability of the fractal dimension measure of solar magnetic features and on its variation with solar activity, Astronomy and Astrophysics, 461, 331-338, doi:10.1051/0004-6361:20065951; eprintid: arXiv:astro-ph/0609748.
  190. Crooker, N. U., A. Balogh, V. Bothmer, R. J. Forsyth, G. Gloeckler, A. Hewish, M. Hilchenbach, R. Kallenbach, B. Klecker, and J. A. Linker (1999), The Solar Origin of Corotating Interaction Regions and Their Formation in the Inner Heliosphere.
  191. Crooker, N. U., and A. H. McAllister (1997), Transients Associated with Recurrent Storms, Journal of Geophysical Research, 102 (A7) 14, 041-014.
  192. Crooker, N. U., et al. (1998), Sector Boundary Transformation by an Open Magnetic Cloud, J.Geophys.Res., 103 (11), 26859.
  193. Culhane, J. L., C. R. Foley, S. Patsourakos, and D. Mackay (2002), Solar cycle variation of the temperature structure within the cores of coronal streamers, 2002.
  194. Dalla, S., A. Balogh, B. Heber, C. Lopate, and R. B. McKibben (2002), Observation of decay phases of solar energetic particle events at 1 and 5 AU from the Sun, J.Geophys.Res, 107, 1370-1370.
  195. Dalmasse, K., D. W. Nychka, S. E. Gibson, Y. Fan, and N. Flyer (2016), ROAM: A Radial-Basis-Function Optimization Approximation Method for Diagnosing the Three-Dimensional Coronal Magnetic Field, Frontiers in Astronomy and Space Sciences, 3(24), doi:10.3389/fspas.2016.00024.
  196. Darnell, J. A., A. L. Stanger, T. E. Holzer, D. Elmore, H. R. Gilbert, G. Detoma, and J. T. Burkepile (2002), An Improved Calibration for Obtaining Intensity and Line-of-Sight Velocity Using MLSO/CHIP He I 1083 nm Observations, 2002.
  197. Darnell, T., J. Burkepile, and P. Fox (2005), The Mauna Loa Solar Observatory as a Virtual Observatory Data Provider, AGU Fall Meeting Abstracts, 31, 1154.
  198. Darnell, T., J. T. Burkepile, and A. L. Stanger (2004), MLSO/HAO Solar Data and its Possible Role in the Virtual Solar Observatory (VSO), 2004.
  199. Dash, S., P. Bhowmik, B. Athira, N. Ghosh, and D. Nandy (2020), Prediction of the Sun’s Coronal Magnetic Field and Forward-modeled Polarization Characteristics for the 2019 July 2 Total Solar Eclipse, The Astrophysical Journal, 890(1), 37, doi:10.3847/1538-4357/ab6a91.
  200. Davis, S. M., J. Fontenla, J. Harder, G. Rottman, and R. Meisner (2003), Modeling Solar Irradiance With the PSPT Solar Disk Observations and RISE Solar Spectrum Synthesis, AGU Fall Meeting Abstracts, 12, 1159.
  201. Day, C. (2009), Resonant radio waves rotate tokamak plasma, in Physics Today, edited, pp. 16-17, doi:10.1063/1.3226702.
  202. Dayeh, M. A. (2015), Coronal Mass Ejections, Handbook of Cosmic Hazards and Planetary Defense, 81-98, doi:10.1007/978-3-319-03952-7_9.
  203. de la Cruz Rodríguez, J., B. De Pontieu, M. Carlsson, and L. H. M. Rouppe van der Voort (2013), Heating of the Magnetic Chromosphere: Observational Constraints from Ca II λ8542 Spectra, The Astrophysical Journal Letters, 764(1 id: L11), 6, doi:10.1088/2041-8205/764/1/l11.
  204. De Moortel, I., P. Browning, S. J. Bradshaw, B. Pintér, and E. P. Kontar (2008), The way forward for coronal heating, Astronomy & Geophysics, 49(3), 3.21, doi:10.1111/j.1468-4004.2008.49321.x.
  205. De Moortel, I., S. McIntosh, J. Threlfall, C. Bethge, and J. Liu (2014), Potential Evidence for the Onset of Alfvénic Turbulence in Trans-equatorial Coronal Loops, The Astrophysical Journal Letters, 782(2), L34, doi:10.1088/2041-8205/782/2/l34.
  206. De Moortel, I., and V. M. Nakariakov (2012), MHD Waves and Coronal Seismology: an overview of recent results, Arxiv preprint arXiv:1202.1944, doi:10.1098/rsta.2011.0640.
  207. De Moortel, I., D. Pascoe, A. Wright, and A. Hood (2015), Transverse, propagating velocity perturbations in solar coronal loops, Plasma Physics and Controlled Fusion, 58(1), 014001, doi:10.1088/0741-3335/58/1/014001.
  208. De Moortel, I., and D. J. Pascoe (2012), The Effects of Line-of-sight Integration on Multistrand Coronal Loop Oscillations, The Astrophysical Journal, 746, 31, doi:10.1088/0004-637x/746/1/31.
  209. de Toma, G. (2004), Solar Cycle 23: An Anomalous Cycle?, ApJ, 609, 114.
  210. de Toma, G. (2010), Evolution of Coronal Holes and Implications for High-Speed Solar Wind During the Minimum Between Cycles 23 and 24, Solar Physics, 274(1-2), 195-217, doi:10.1007/s11207-010-9677-2.
  211. de Toma, G., J. T. Burkepile, H. R. Gilbert, and T. E. Holzer (2003), Acceleration of Prominences in the Low Corona, AGU Fall Meeting Abstracts, 22, 0181.
  212. de Toma, G., R. Casini, T. E. Berger, B. C. Low, A. G. Wiin, J. T. Burkepile, K. S. Balasubramaniam, and N. M. National Solar Observatory/Sacramento Peak Sunspot (2009), Observations of Large-Scale Dynamic Bubbles in Prominences.
  213. de Toma, G., R. Casini, J. T. Burkepile, and B. C. Low (2008), Rise of a Dark Bubble through a Quiescent Prominence, Astrophysical Journal, 687, L123-L126; L123-L126, doi:10.1086/593326.
  214. de Toma, G., S. E. Gibson, R. L. Jenne, and C. N. Arge (2002), Solar Synoptic Maps as a Means to Study the Global Sun, AGU Fall Meeting Abstracts, 51, 0432.
  215. de Toma, G., H. R. Gilbert, T. E. Holzer, and J. T. Burkepile (2001), The Relationship Between Eruptive Prominence Acceleration and CME Speed, AGU Spring Meeting Abstracts.
  216. de Toma, G., T. E. Holzer, J. T. Burkepile, and H. R. Gilbert (2005), Transient Coronal Holes as Seen in the He I 1083 nm MLSO Observations, Astrophysical Journal, 621(\), 1109-1120, doi:10.1086/426904.
  217. de Toma, G., T. E. Holzer, H. R. Gilbert, and J. T. Burkepile (2004), Transient Coronal Holes: EUV and IR HeI 1083nm Observations, AGU Fall Meeting Abstracts, 53, 0328.
  218. de Toma, G., and O. R. White (2000), From Solar Minimum to Solar Maximum: Changes in Total and Spectral Solar Irradiance, paper presented at The Solar Cycle and Terrestrial Climate, Solar and Space weather, 2000.
  219. de Wijn, A. (2018), Characterization of Cameras for the COSMO K-coronagraph, The Astronomical Journal, 157(1), 8.
  220. de Wijn, A. G. (2012), Measuring Magnetic Fields in the Solar Atmosphere, Arxiv preprint arXiv:1207.0943.
  221. de Wijn, A. G., C. Bethge, S. Tomczyk, and S. McIntosh (2012a), The chromosphere and prominence magnetometer, Arxiv preprint arXiv:1207.0969, doi:10.1117/12.926395.
  222. de Wijn, A. G., J. T. Burkepile, S. Tomczyk, P. G. Nelson, P. Huang, and D. Gallagher (2012b), Stray light and polarimetry considerations for the COSMO K-Coronagraph, Arxiv preprint arXiv:1207.0978, doi:10.1117/12.926511.
  223. DeForest, C. E., J. T. Hoeksema, J. B. Gurman, B. J. Thompson, S. P. Plunkett, R. Howard, R. C. Harrison, and D.M. Hassler (1997), Polar Plume Anatomy: Results of a Coordinated Observation, Solar Physics, 175, 393-410.
  224. Del Zanna, G., and E. E. DeLuca (2018), Solar Coronal Lines in the Visible and Infrared: A Rough Guide, The Astrophysical Journal, 852(1), 52.
  225. DeLand, M. T., and R. P. Cebula (2012), Solar UV variations during the decline of Cycle 23, Journal of Atmospheric and Solar-Terrestrial Physics, doi:10.1016/j.jastp.2012.01.007.
  226. Denker, C., and K. G. Strassmeier (2007), Solar Physics and the Solar-Stellar Connection at Dome C, EAS Publications Series, 33, 97-104, doi:10.1051/eas:0833014.
  227. Denker, C. D. E. G., and R. R. Thomas (2007), Ground-Based Solar Facilities in the U.S.A., Modern Solar Facilities, Advanced Solar Science, 31-38.
  228. Dennis, B. R., A. G. Emslie, and H. S. Hudson (2011), Overview of the Volume, Space Science Reviews, 159, 3-17, doi:10.1007/s11214-011-9802-z.
  229. Di Mauro, M. P., W. A. Dziembowski, L. Paterno, and P. R. Goode (1998), Rotation of the Solar Interior: New Results by Helioseismic Data Inversions; Seismic Sounding of the Solar Core: Purging the Corruption from the Sun's Magnetic Activity, ESA-SP-418, Noordwijk: ESA Publications Division, 1998; 1996.
  230. Dikpati, M., A. Suresh, and J. Burkepile (2015), Cyclic Evolution of Coronal Fields from a Coupled Dynamo Potential-Field Source-Surface Model, Solar Physics, 291, 339-355, doi:10.1007/s11207-015-0831-8.
  231. Dobrzycka, D., J. C. Raymond, D. A. Biesecker, J. Li, and A. Ciaravella (2003), Ultraviolet Spectroscopy of Narrow Coronal Mass Ejections, The Astrophysical Journal, 588(1), 586-595.
  232. Dogan, S. (2011), Ion-cyclotron waves in solar coronal hole, New Astronomy, 17(3), 316-324, doi:10.1016/j.newast.2011.08.008.
  233. Dolei, S., et al. (2019), Effect of the non-uniform solar chromospheric Lyα radiation on determining the coronal H I outflow velocity, A&A, 627, A18, doi:10.1051/0004-6361/201935048.
  234. Dolei, S., R. Susino, C. Sasso, A. Bemporad, V. Andretta, D. Spadaro, R. Ventura, E. Antonucci, L. Abbo, and V. Da Deppo (2018), Mapping the solar wind HI outflow velocity in the inner heliosphere by coronagraphic ultraviolet and visible-light observations, Astronomy & Astrophysics, 612, A84, doi:10.1051/0004-6361/201732118.
  235. Domingo, V., I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, N. Krivova, G. Kopp, W. Schmutz, S. K. Solanki, and H. C. Spruit (2009), Solar surface magnetism and irradiance on time scales from days to the 11-year cycle, Space science reviews, 145(3), 337-380, doi:10.1007/s11214-009-9562-1.
  236. Doorsselaere, T. V., V. M. Nakariakov, and E. Verwichte (2008), Detection of Waves in the Solar Corona: Kink or Alfvén?, The Astrophysical Journal Letters, 676, L73, doi:10.1086/587029.
  237. Dove, J., L. Rachmeler, S. E. Gibson, P. G. Judge, and S. Tomczyk (2010), A ring of polarized light: evidence for twisted coronal magnetism in cavities (Invited), paper presented at AGU Fall Meeting Abstracts, 2010.
  238. Doğan, S., and E. Pekünlü (2012), Ion-cyclotron resonance with streaming bi-Maxwellian distribution, New Astronomy, doi:10.1016/j.newast.2012.12.004.
  239. Dryer, M. (1994a), Comments on the So-Called `Real Story' of CMEs and Flares, in Solar Dynamic Phenomena and Solar Wind Consequences, Proc.of the Third SOHO Workshop, 26-29 Sept. 1994, ESA SP-373.
  240. Dryer, M. (1994b), Interplanetary Studies: Propagation of Disturbances Between the Sun and the Magnetosphere, Space Science Reviews, 67, 363-419.
  241. Dryer, M. (1996), Comments on the Origins of Coronal Mass Ejections, Solar Physics, 169, 421-429.
  242. Duchlev, P. (2021), Prominence eruptions as precursors of coronal mass ejections, Bulgarian Astrophysical Journal, 34.
  243. Duchlev, P., K. Koleva, M. Madjarska, and M. Dechev (2016), Homologous prominence non-radial eruptions: A case study, New Astronomy, 48, 66-73, doi:10.1016/j.newast.2016.05.001.
  244. Dudík, J., G. Del Zanna, J. Rybák, J. Lörinčík, E. Dzifčáková, H. E. Mason, S. Tomczyk, and M. Galloy (2021), Electron Densities in the Solar Corona Measured Simultaneously in the Extreme Ultraviolet and Infrared, The Astrophysical Journal, 906, 118, doi:10.3847/1538-4357/abcd91.
  245. Duvall Jr, T. L., and A. C. Birch (2010), The Vertical Component of the Supergranular Motion, The Astrophysical Journal Letters, 725, L47, doi:10.1088/2041-8205/725/1/l47.
  246. Dwivedi, B. N., and A. K. Srivastava (2010), Coronal heating by Alfvén waves, Current science, 98(3), 295, doi:10.1007/bf00712502.
  247. Dziembowski, W. A., P. R. Goode, M. P. DiMauro, A. G. Kosovichev, and J. Schou (1998), Evidence for onset of solar activity from SOHO/MDI seismic data.
  248. Dziembowski, W. A., P. R. Goode, J. Schou, and S. Tomczyk (1997), Helioseismic Measure of Solar Activity-Meaning and Applications, A&A, 323, 231-234.
  249. Edenhofer, P., P. B. Esposito, R. T. Hansen, S. F. Hansen, E. Luneburg, W. L. Martin, and A. I. Zygielbaum (1977), Time Delay Occultation Data of the Helios Spacecrafts and Preliminary Analysis for Probing the Solar Corona, Journal of Geophysical Research, 42, 673-698.
  250. Eff-Darwich, A., and S. G. Korzennik (2003), A new upper limit to the temporal variation of the rotation rate of the tachocline between 1994 and 2002, ESA SP-517, Noordwijk, Netherlands: ESA Publications Division, 2003.
  251. Eff-Darwich, A., S. G. Korzennik, S. J. Jiménez-Reyes, and F. Pérez Hernandez (2002a), An Upper Limit on the Temporal Variations of the Solar Interior Stratification, ApJ, 580, 574.
  252. Eff-Darwich, A., S. G. Korzennik, S. J. Jiménez-Reyes, and F. Pérez Hernandez (2002b), Inversion of the Internal Solar Rotation Rate, ApJ, 573, 857.
  253. Eff-Darwich, A., S. Thiery, S. Jimenez-Reyes, S. G. Korzennik, and F. Perez-Hernandez (2001), Rotation of the solar interior: compatibility of different helioseismic data sets, ESA SP-464, Noordwijk, 2001.
  254. Efremov, V. I., L. D. Parfinenko, and A. A. Solov'ev (2015), Identification of large-scale cellular structures on the Sun based on the SDO and PSPT data, Astrophysics and Space Science, 356, 12, doi:10.1007/s10509-014-2195-1.
  255. Egorov, Y. I., and V. Fainshtein (2013), Study of CME Properties Using High Resolution Data, Central European Astrophysical Bulletin, 37, 619-630.
  256. Eker, Z., Brandt, P.N, Hanslmeier, Otruba, and Wehrli (2003), Deriving effective sunspot temperatures from SOHO/VIRGO irradiance measurements. A starspot modelling approach, A&A, 404, 1107.
  257. Elmore, D. F. (2014), Polarization calibration techniques and scheduling for the Daniel K. Inouye Solar Telescope, Proceedings of the International Astronomical Union, 10(S305), 102-107, doi:10.1017/s1743921315004603.
  258. Elmore, D. F., J. Burkepile, A. Lecinski, A. Stanger, and K. Streander (1996), Report on the MkIII Calibration and Quality Assurance Project, NCAR Technical Report, NCAR/TN-422+PPR, June 1996.
  259. Elmore, D. F., J. T. Burkepile, J. A. Darnell, A. R. Lecinski, and A. L. Stanger (2003), Calibration of a ground-based solar coronal polarimeter, 2003.
  260. Elmore, D. F., G. L. Card, C. W. Chambellan, D. M. Hassler, H. L. Hull, A. R. Lecinski, R. M. MacQueen, K. V. Streander, J. L. Streete, and O. R. White (1998), Chromospheric Helium Imaging Photometer (An Instrument for High Time Cadence 1083-nm Wavelength Solar Observations), Applied Optics, 37 (19), 4270-4276.
  261. Elsworth, Y. Short-period oscillation in the Sun and solar-type stars.
  262. Engvold, O. (2015), Description and Classification of Prominences, in Solar Prominences, edited by J.-C. Vial and O. Engvold, pp. 31-60, Springer International Publishing, Cham, doi:10.1007/978-3-319-10416-4_2.
  263. Erdélyi, R., and M. Goossens (2011), Magnetohydrodynamic Waves and Seismology of the Solar Atmosphere, Space Science Reviews, 158(2-4), 167-168, doi:10.1007/s11214-011-9800-1.
  264. Erdélyi, R., C. J. Nelson, C. E. Fischer, and M. Temmer (2016), On The Role of MHD Waves in Heating Localised Magnetic Structures, in Astronomical Society of the Pacific Conference Series, edited by I. Dorotovic, p. 153.
  265. Ermolli, I. (1998), The Prototype Rise-PSPT Instrument Operating in Rome, Solar Phys, 177.
  266. Ermolli, I., Berrilli, and Florio (2003), A measure of the network radiative properties over the solar activity cycle, A&A, 412, 857.
  267. Ermolli, I., S. Criscuoli, F. Giorgi, and I. O. A. di Roma (2011), Recent results from optical synoptic observations of the solar atmosphere with ground-based instruments, Contrib.Astron.Obs.Skalnaté Pleso, 41, 73-84.
  268. Ermolli, I., S. Criscuoli, H. Uitenbroek, F. Giorgi, M. P. Rast, and S. K. Solanki (2010), Radiative emission of solar features in the Ca II K line: comparison of measurements and models, Astronomy and Astrophysics, 523, 14, doi:10.1051/0004-6361/201014762.
  269. Ermolli, I., K. Matthes, T. Dudok de Wit, N. A. Krivova, K. Tourpali, M. Weber, Y. C. Unruh, L. Gray, U. Langematz, and P. Pilewskie (2012), Recent variability of the solar spectral irradiance and its impact on climate modelling, Atmospheric Chemistry and Physics Discussions, 12(9), 24557-24642, doi:10.5194/acpd-12-24557-2012.
  270. Ermolli, I. S. C., M. Centrone, F. Giorgi, and V. Penza (2007), Photometric properties of facular features over the activity cycle, A&A, 465 1, 305-314, doi:10.1051/0004-6361:20065995.
  271. Eselevich, M., and V. Eselevich (2010), On The Possible Mechanism Of Energy Dissipation In Shock‐Wave Fronts Driven Ahead Of Coronal Mass Ejections, paper presented at AIP Conference Proceedings, American Institute of Physics.
  272. Eselevich, M. V. (2010), Detecting the widths of shock fronts preceding coronal mass ejections, Astronomy reports, 54(2), 173-183, doi:10.1134/s1063772910020101.
  273. Eselevich, V., and M. Eselevich (2012), Disturbed Zone and Piston Shock Ahead of Coronal Mass Ejection, The Astrophysical Journal, 761(1), 68, doi:10.1088/0004-637x/761/1/68.
  274. Eselevich, V., and M. Eselevich (2013), The role of rising magnetic tubes in the formation of impulsive coronal mass ejections, Astronomy Reports, 57(11), 860-871, doi:10.1134/s1063772913110012.
  275. Eselevich, V., and M. Eselevich (2014), Physical differences between the initial phase of the formation of two types of coronal mass ejections, Astronomy Reports, 58(4), 260-271, doi:10.1134/s1063772914030032.
  276. Eselevich, V., M. Eselevich, V. Romanov, D. Romanov, and K. Romanov (2011), On existence of two different mechanisms for forming coronal mass ejections, Arxiv preprint arXiv:1112.1173.
  277. Eselevich, V. G., and M. V. Eselevich (2011), A formation mechanism for the type II radio emission in the solar corona unrelated to shock waves, Arxiv preprint arXiv:1105.3556.
  278. Eselevich, V. G., M. V. Eselevich, and I. V. Zimovets (2013), Blast-wave and piston shocks connected with the formation and propagation of a coronal mass ejection, Astronomy Reports, 57(2), 142-151, doi:10.1134/s1063772913020042.
  279. Eselevich, V. G., V. G. Fainshtein, and G. V. Rudenko (1999), Study of the structure of streamer belts and chains in the solar corona, Solar Physics, 188, 277-297.
  280. Esser, R., N. S. Brickhouse, S. R. Habbal, and A. Mossman (1996), Demonstrating the Limitations of Line Ratio Temperature Diagnostic Using Fe X and Fe XIV Spectral Line Intensity Observations, Proc.of the AIP Conference, no. 382, 173-176.
  281. Esser, R., S. R. Habbal, W. A. Coles, and J. V. Hollweg (1997), Hot Protons in the Inner Corona and Their Effect on the Flow Properties of the Solar Wind, Journal of Geophysical Research, 102 (A4), 7063-7074.
  282. Esser, R. a. S. R. H. (1996), Modeling High Flow Speeds in the Inner Corona, in Solar Wind Eight, eds. D. Winterhalter, J. Gosling, S.R. Habbal, W. Kurth, and M. Neugebauer, AIP; 133-136; 1996.
  283. Evans, R. M., M. Opher, R. Oran, B. van der Holst, I. V. Sokolov, R. Frazin, T. I. Gombosi, and A. Vásquez (2012), Coronal Heating by Surface Alfvén Wave Damping: Implementation in a Global Magnetohydrodynamics Model of the Solar Wind, The Astrophysical Journal, 756(2), 155, doi:10.1088/0004-637x/756/2/155.
  284. Everson, R. W., and M. Dikpati (2017), An Observationally Constrained 3D Potential-field Source-surface Model for the Evolution of Longitude-dependent Coronal Structures, The Astrophysical Journal, 850(2), 152.
  285. Everts, F. (1981), A Guide to the Data Systems of the High Altitude Observatory's Coronal Dynamics Project, NCAR Technical Note, TN-187+1A, 20 pp.
  286. Fainshtein, V., and Y. I. Egorov (2014), Initiation of CMEs Associated with Filament Eruption, and the Nature of CME Related Shocks, Advances in Space Research, doi:10.1016/j.asr.2014.05.019.
  287. Fainshtein, V., and Y. S. Zagainova (2015), On the occurrence and the motion of fast impulsive coronal mass ejections associated with powerful flares and unassociated with eruptive filaments, Cosmic Research, 53(1), 31-46.
  288. Fainshtein, V. G. (2000), On the possible association of coronal hole dynamics with coronal mass eruptions and major geomagnetic storms, Advances in Space Research, 25(9), 1867-1873.
  289. Fainshtein, V. G., G. V. Rudenko, and V. V. Grechnev (1998), An investigation of the large-scale magnetic field variations in the corona prior to and after CME eruptions, Solar Physics, 181(1), 133-158.
  290. Fainshtein, V. G., and Y. S. Zagaynova (2012), The beginning of halo coronal mass ejection, arXiv preprint arXiv:1208.5890.
  291. Fan, S., J. He, L. Yan, S. Tomczyk, H. Tian, H. Song, L. Wang, and L. Zhang (2018), Turbulence and Heating in the Flank and Wake Regions of a Coronal Mass Ejection, Solar Physics, 293(1), 6, doi:10.1007/s11207-017-1221-1.
  292. Fan, Y. (2005), Coronal Mass Ejections as Loss of Confinement of Kinked Magnetic Flux Ropes, The Astrophysical Journal, 630, 543-551, doi:10.1086/431733.
  293. Fazzari, C., I. Ermolli, M. Centrone, S. Criscuoli, and F. Giorgi (2003), From the minimum to the maximum: the quality of Rome-PSPT images, Memorie della Societa Astronomica Italiana, 74, 667.
  294. Fedun, V., G. Verth, D. B. Jess, and R. Erdélyi (2011), Frequency Filtering of Torsional Alfvén Waves by Chromospheric Magnetic Field, The Astrophysical Journal Letters, 740, L46, doi:10.1088/2041-8205/740/2/l46.
  295. Feng, S., Y. Chen, X. Kong, G. Li, H. Song, X. Feng, and F. Guo (2013), Diagnostics on the Source Properties of a Type II Radio Burst with Spectral Bumps, The Astrophysical Journal, 767(1), 29, doi:10.1088/0004-637x/767/1/29.
  296. Feng, S. W., Y. Chen, X. L. Kong, G. Li, H. Q. Song, X. S. Feng, and Y. Liu (2012a), Radio Signatures of Coronal-mass-ejection–Streamer Interaction and Source Diagnostics of Type II Radio Burst, The Astrophysical Journal, 753(1), 21, doi:10.1088/0004-637x/753/1/21.
  297. Feng, X. (2020a), Current Status of MHD Simulations for Space Weather, in Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, edited, pp. 1-123, Springer Singapore, Singapore, doi:10.1007/978-981-13-9081-4_1.
  298. Feng, X. (2020b), Data-Driven MHD Modeling of Solar Wind, in Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, edited, pp. 555-613, Springer Singapore, Singapore, doi:10.1007/978-981-13-9081-4_7.
  299. Feng, X., C. Jiang, C. Xiang, X. Zhao, and S. T. Wu (2012b), A Data-driven Model for the Global Coronal Evolution, The Astrophysical Journal, 758(1), 62, doi:10.1088/0004-637x/758/1/62.
  300. Feng, X., L. P. Yang, C. Q. Xiang, Y. Liu, X. Zhao, and S. T. Wu (2012c), Numerical Study of the Global Corona for CR 2055 Driven by Daily Updated Synoptic Magnetic Field, paper presented at Astronomical Society of the Pacific Conference Series.
  301. Feng, X., S. Zhang, C. Xiang, L. Yang, C. Jiang, and S. T. Wu (2011), A Hybrid Solar Wind Model of the CESE HLL Method with a Yin-Yang Overset Grid and an AMR Grid, The Astrophysical Journal, 734, 50, doi:10.1088/0004-637x/734/1/50.
  302. Ferreira, S. E. S. (2010), Living with a star.
  303. Filippov, B. (2014), Filament eruption with apparent reshuffle of endpoints, Monthly Notices of the Royal Astronomical Society, 442(4), 2892-2900.
  304. Fisher, R. (1981a), A Sunspot Maximum Corona, Sky and Telescope, 63, 18.
  305. Fisher, R., C. Garcia, E. Lundin, P. Seagraves, D. G. Sime, and K. Rock (1985), The White Light Solar Corona: An Atlas of 1984 K-Coronameter Synoptic Charts, Dec. 1983 - Jan. 1985, NCAR Technical Note TN-246+STR 72 pp.
  306. Fisher, R., C. Garcia, K. Rock, P. Seagraves, and E. Yasukawa (1982a), The white light solar corona: an atlas of K-coronameter synoptic charts, August 1980 - September 1981Rep.
  307. Fisher, R., C. J. Garcia, and P. Seagraves (1981a), On the Coronal Transient - Eruptive Prominence of 1980 August 5, Astrophys.Journal, 246, L161-L164.
  308. Fisher, R., and M. Guhathakurta (1994), Coronal Streamers as Detected with the Spartan 201-01 White Light Coronagraph, in Solar Dynamic Phenomena and Solar Wind Consequences, Proc.of the Third SOHO Workshop, 26-29 Sept. 1994, ESA SP-373.
  309. Fisher, R., P. Seagraves, D. G. Sime, M. McCabe, and D. Mickey (1984), The sun as a star- 1982 June 14-August 13, Astrophysical Journal, 280, 873-878.
  310. Fisher, R., and D. G. Sime (1984), Solar activity cycle variation of the K corona, Astrophysical Journal, 285, 354-358.
  311. Fisher, R. a. C. G. (1984a), Detection of a Slowly Moving Coronal Transient Event, The Astrophysical Journal, 282, L35-L37.
  312. Fisher, R. a. D. G. S. (1984b), Rotational Characteristics of the White-Light Solar Corona: 1965-1983, The Astrophysical Journal, 287, 959-968.
  313. Fisher, R. a. P. S. (1984c), Distribution of the K-Corona over the Polar Regions of the Solar Disk: 1965-1983, NCAR Technical Note, TN-224+STR, 234 pp.
  314. Fisher, R. R. (1982a), On the Nature of the Solar Corona Near the Maximum of Cycle 21, Astrophys.Journal, 259, 431-436.
  315. Fisher, R. R. (1982b), Optical Observations of the Solar Corona, Space Sci.Rev., 33, 9-16.
  316. Fisher, R. R. (1984d), Coronal Mass-Ejection Events, Adv.Space Res.; 4, 7, 163-174.
  317. Fisher, R. R., C. J. Garcia, K. A. Rock, P. H. Seagraves, and E. A. Yasukawa (1982b), Joint solar dynamics project data summary. Volume 1: Chromospheric and coronal observations, NASA STI/Recon Technical Report N, 83, 32702.
  318. Fisher, R. R., L. B. Lacey, K. A. Rock, E. A. Yasukawa, N. R. Sheeley, Jr, D. J. Michels, R. A. Howard, M. J. Koomen, and A. Bagrov (1983), The Solar Corona on 31 July, 1981, Solar Physics, 83, 233-242.
  319. Fisher, R. R., R. H. Lee, R. M. MacQueen, and A. I. Poland (1981b), New Mauna Loa Coronagraph Systems, Appl.Op., 20, 1094-1101.
  320. Fisher, R. R. a. A. I. P. (1981b), Coronal Activity Below 2 RO: 1980 February 15-17, The Astrophysical Journal, 246, 1004-1009.
  321. Foley, C. R., S. Patsourakos, J. L. Culhane, and D. MacKay (2002), Solar cycle variation of the temperature structure within the cores of coronal streamers, A&A, 381, 1049-1058.
  322. Fontenla, J., and G. Harder (2005), Physical modeling of spectral irradiance variations, Mem.Soc.Astron.Ital, 76, 826–833.
  323. Fontenla, J., P. Stancil, and E. Landi (2015), Solar Spectral Irradiance, Solar Activity, and the Near-ultra-violet, The Astrophysical Journal, 809(2), 157.
  324. Fontenla, J., White, O.R, Fox, P.A, Avrett, E.H, Kurucz, and R.L (1999), Calculation of Solar Irradiances. I. Synthesis of the Solar Spectrum, ApJ, 518, 480.
  325. Fontenla, J. M. (2004), The Signature of Solar Activity in the Infrared Spectral Irradiance, ApJ, 605, 85.
  326. Fontenla, J. M., E. Avrett, G. Thuillier, and J. Harder (2006), Semiempirical Models of the Solar Atmosphere. I. The Quiet- and Active Sun Photosphere at Moderate Resolution, The Astrophysical Journal, 639, doi:10.1086/499345.
  327. Fontenla, J. M., W. Curdt, M. Haberreiter, J. Harder, and H. Tian (2009a), Semiempirical Models of the Solar Atmosphere. III. Set of Non-LTE Models for Far-Ultraviolet/Extreme-Ultraviolet Irradiance Computation, The Astrophysical Journal, 707, 482, doi:10.1088/0004-637x/707/1/482.
  328. Fontenla, J. M., J. Harder, W. Livingston, M. Snow, and T. Woods (2011), High-resolution solar spectral irradiance from extreme ultraviolet to far infrared, Journal of Geophysical Research (Atmospheres), 116, 20108, doi:10.1029/2011jd016032.
  329. Fontenla, J. M., E. Quémerais, I. González Hernández, C. Lindsey, and M. Haberreiter (2009b), Solar irradiance forecast and far-side imaging, Advances in Space Research, 44(4), 457-464, doi:10.1016/j.asr.2009.04.010.
  330. Fontenla, J. M. W. C., E. H. Avrett, and J. Harder (2007), Log-normal intensity distribution of the quiet-Sun FUV continuum observed by SUMER, A&A, 468 2, 695-699, doi:10.1051/0004-6361:20066854.
  331. Forland, B., S. Gibson, J. Dove, and T. Kucera (2014), The solar physics FORWARD codes: Now with widgets!, paper presented at IAU Symposium.
  332. Forland, B., S. Gibson, J. Dove, L. Rachmeler, and Y. Fan (2013), Coronal Cavity Survey: Morphological Clues to Eruptive Magnetic Topologies, Solar Physics, 288(2), 603-615, doi:10.1007/s11207-013-0361-1.
  333. Fossat, E., et al. (2003), Eleven years of IRIS frequencies and splittings, paper presented at Proceedings of SOHO 12 / GONG+ 2002.Local and global helioseismology: the present and future, ESA SP-517, Noordwijk, Netherlands, 2003.
  334. Foster, D., S. E. Gibson, T. Holzer, and M. Guhathakurta (2002), 3-Dimensional Density Model of the Solar Corona, AGU Fall Meeting Abstracts, 52, 0448.
  335. Foukal, P., Bernasconi, Eaton, and Rust (2004), Broadband Measurements of Facular Photometric Contrast Using the Solar Bolometric Imager, ApJ, 611, 57.
  336. Fox, P., D. McGuinness, D. Middleton, L. Cinquini, J. A. Darnell, J. Garcia, P. West, J. Benedict, and S. Solomon (2006), Semantically-Enabled Large-Scale Science Data Repositories, the 5th International Semantic Web Conference (ISWC06), LNCS, ed.Cruz et al, 4273, 792-805.
  337. Fox, P., D. L. McGuinness, L. Cinquini, P. West, J. Garcia, J. L. Benedict, and D. Middleton (2009), Ontology-supported scientific data frameworks: The Virtual Solar-Terrestrial Observatory experience, Computers & Geosciences, 35(4), 724-738, doi:10.1016/j.cageo.2007.12.019.
  338. Francile, C., A. Costa, M. L. Luoni, and S. Elaskar (2013), Hα Moreton waves observed on December 06, 2006. A 2D case study, Astronomy and Astrophysics, 552(A3), 11, doi:10.1051/0004-6361/201118001.
  339. Franz, M. (1999), ORIGIN, INJECTION, AND ACCELERATION OF CIR PARTICLES: OBSERVATIONS, Corotating Interaction Regions.
  340. Frazin, R. A. (2012), Coronal Mass Ejection Reconstruction from Three Viewpoints via Simulation Morphing. I. Theory and Examples, The Astrophysical Journal, 761(1), 24, doi:10.1088/0004-637x/761/1/24.
  341. Frazin, R. A., and F. Kamalabadi (2005), Rotational Tomography For 3d Reconstruction Of The White-Light And Euv Corona In The Post-Soho Era, Solar Physics, 228(1), 219-237, doi:10.1007/s11207-005-2764-0.
  342. Frazin, R. A., A. M. Vásquez, W. T. Thompson, R. J. Hewett, P. Lamy, A. Llebaria, A. Vourlidas, and J. Burkepile (2012), Intercomparison of the LASCO-C2, SECCHI-COR1, SECCHI-COR2, and Mk4 Coronagraphs, Solar Physics, 1-21, doi:10.1007/s11207-012-0028-3.
  343. French, R., S. Matthews, L. van Driel-Gesztelyi, D. Long, and P. Judge (2020), Dynamics of Late-stage Reconnection in the 2017 September 10 Solar Flare, The Astrophysical Journal, 900(2), doi:10.3847/1538-4357/aba94b.
  344. French, R. J., P. G. Judge, S. A. Matthews, and L. van Driel-Gesztelyi (2019), Spectropolarimetric Insight into Plasma Sheet Dynamics of a Solar Flare, The Astrophysical Journal Letters, 887(2), L34, doi:10.3847/2041-8213/ab5d34.
  345. Fröhlich, C., and J. Lean (2004), Solar radiative output and its variability: evidence and mechanisms, Astronomy and Astrophysics Review, 12(4), 273-320.
  346. Fujimura, D., and S. Tsuneta (2009), Properties of Magnetohydrodynamic Waves in the Solar Photosphere Obtained with Hinode, The Astrophysical Journal, 702, 1443, doi:10.1088/0004-637x/702/2/1443.
  347. Fuller, J., and S. E. Gibson (2009), Survey of Coronal Cavity Density Profiles, The Astrophysical Journal, 700, 1205-1215, doi:10.1088/0004-637x/700/2/1205.
  348. Fuller, J., S. E. Gibson, G. de Toma, and Y. Fan (2008), Observing the Unobservable? Modeling Coronal Cavity Densities, Astrophysical Journal, 678, 515-530, doi:10.1086/533527.
  349. Gabriel, A. H., and colleagues (1997), Performance and Early Results from the GOLF Instrument Flown on the SOHO Mission, Sol Phys, 175, 207-226.
  350. Gallagher, D., S. Tomczyk, H. Zhang, and P. G. Nelson (2012), Optical design of the COSMO large coronagraph, paper presented at SPIE Astronomical Telescopes+ Instrumentation, International Society for Optics and Photonics.
  351. Gallagher, D., Z. Wu, B. Larson, P. G. Nelson, P. Oakley, S. Sewell, and S. Tomczyk (2016), The COSMO coronagraph optical design and stray light analysis, paper presented at SPIE Astronomical Telescopes+ Instrumentation, International Society for Optics and Photonics.
  352. Galvin, A. B., and H. S. Hudson (1997), An Overview of IACG Campaign 4: Solar Sources of Heliospheric Structure Observed Out of the Ecliptic, Correlated Phenomena at the Sun, in the Heliosphere and in Geospace.
  353. Gao, P. X., and K. J. Li (2010), Velocity Distribution of CMEs After Projection Correction, Chinese Astronomy and Astrophysics, 34(2), 154-162, doi:10.1016/j.chinastron.2010.04.003.
  354. Garcia, C., and P. Seagraves (1983), Computer Communications with Mauna Loa Solar Observatory, NCAR Technical Note, TN-223+IA, 45 pp.
  355. Garcia, C. J., and E. A. Yasukawa (1983), Mauna Loa sky conditions - Bench mark and present, Publications of the Astronomical Society of the Pacific, 95, 520-526.
  356. Garcia, C. J., E. A. Yasukawa, and D. G. Sime (1987), Long Term Variations in Sky Transmission above Mauna Loa Solar Observatory, 1987.
  357. Garcia, M. A., and A. R. Papa (2017), Possibility of Excitation of Magnetospheric Modes by Strong Geomagnetic Storms, International Journal of Geosciences, 8(05), 743.
  358. Garcia, R. (2003), Rotation of the Solar Deep Core, 2003.
  359. Garcia, R. A., and colleagues (2004), About the rotation of the solar radiative interior, Sol Phys, 220, 269-285.
  360. Gelly, B., S. Khalikov, P. L. Pallé, and I. t. the (1998), Progress Toward an IRIS++ Database Open to the Helioseismological Community, 1998.
  361. Georgobiani, D., Kuhn, J.R, Beckers, and J.M (1995), Using eclipse observations to test scintillation models, Solar Phys, 156, 1.
  362. Gibson, S. (2012), The Magnetism and Dynamics of Solar Coronal Cavities, paper presented at American Astronomical Society Meeting Abstracts, 2012.
  363. Gibson, S. (2013), Magnetism and the Invisible Man: The mysteries of coronal cavities, Proceedings of the International Astronomical Union, 8(S300), 139-146, doi:10.1017/s1743921313010879.
  364. Gibson, S. (2014), Magnetism and the Invisible Man: The mysteries of coronal cavities, paper presented at IAU Symposium.
  365. Gibson, S. (2015a), Coronal cavities: Observations and implications for the magnetic environment of prominences, in Solar Prominences, edited, pp. 323-353, Springer.
  366. Gibson, S. (2015b), Data-model comparison using FORWARD and CoMP, paper presented at Polarimetry: From the Sun to Stars and Stellar Environments: IAU Symposium.
  367. Gibson, S. (2020), Toward Improved Space Weather Prediction through the Observation and Modeling of Coronal MagnetismRep., UNIVERSITY CORPORATION FOR ATMOSPHERIC RESEARCH BOULDER United States.
  368. Gibson, S., T. Bastian, H. Lin, B. C. Low, and S. Tomczyk (2009), Magnetically-Driven Activity in the Solar Corona: A Path to Understanding the Energetics of Astrophysical Plasmas, paper presented at AGB Stars and Related Phenomenastro2010: The Astronomy and Astrophysics Decadal Survey, 2009.
  369. Gibson, S. a. F. B. (1992), Modelling the Large Scale Structure of the Solar Corona, Proc.of the First SOHO Workshop, ESA SP-348, 101.
  370. Gibson, S. E. (2001), Global Solar Wind Structure from Solar Minimum to Solar Maximum: Sources and Evolution, Space Science Reviews, 97(1), 69-79.
  371. Gibson, S. E. (2018), Solar prominences: theory and models, Living Reviews in Solar Physics, 15(1), 7, doi:10.1007/s41116-018-0016-2.
  372. Gibson, S. E., F. Bagenal, and C. B (1996), Low Current Sheets in the Solar Minimum Corona, Journal of Geophysical Research, 101, 4813.
  373. Gibson, S. E., F. Bagenal, D. Biesecker, M. Guhathakurta, J. T. Hoeksema, and B. J. Thompson (1997a), Modeling a Simple Coronal Streamer During Whole Sun Month, Proc.of the Fifth SOHO Workshop, ESA SP-404, 319.
  374. Gibson, S. E., Biesecker, R. Fisher, R. A. Howard, and B. J. Thompson (1997b), Fitting a 3-D Analytic Model of the Coronal Mass Ejection to Observations, Correlated Phenomena at the Sun, in the Heliosphere and in Geospace, Proc.31st ESLAB Symposium, 22-25 Sept.1997, ESA SP-415, 111.
  375. Gibson, S. E., et al. (1999a), The Three-Dimensional Coronal Magnetic Field During Whole Sun Month, The Astrophysical Journal, 520, 871.
  376. Gibson, S. E., K. Dalmasse, L. A. Rachmeler, M. L. De Rosa, S. Tomczyk, G. de Toma, J. Burkepile, and M. Galloy (2017), Magnetic nulls and super-radial expansion in the solar corona, The Astrophysical Journal Letters, 840(2), L13, doi:10.3847/2041-8213/aa6fac.
  377. Gibson, S. E., and Y. Fan (2008), Partially ejected flux ropes: Implications for interplanetary coronal mass ejections, J.Geophys.Res, 113, doi:10.1029/2008ja013151.
  378. Gibson, S. E., L. Fletcher, G. Del Zanna, C. D. Pike, H. E. Mason, C. H. Mandrini, P. Demoulin, H. Gilbert, J. Burkepile, and T. Holzer (2002), The Structure and Evolution of a Sigmoidal Active Region, The Astrophysical Journal, 574(2), 1021-1038.
  379. Gibson, S. E., A. Fludra, F. Bagenal, D. Biesecker, G. D. Zanna, and B. Bromage (1999b), Solar Minimum Streamer Densities and Temperatures Using Whole Sun Month Coordinated Data-sets, Journal of Geophysical Research, 104 A5, 9691.
  380. Gibson, S. E., D. Foster, J. Burkepile, G. de Toma, and A. Stanger (2006), The Calm before the Storm: The Link between Quiescent Cavities and Coronal Mass Ejections, Astrophysical Journal, 641, 590-605, doi:10.1086/500446.
  381. Gibson, S. E., D. J. Foster, M. Guhathakurta, T. Holzer, and O. C. S. Cyr (2003), Three-dimensional coronal density structure:1. Model, J.Geophys.Res., 108 A12, 1444.
  382. Gibson, S. E., T. A. Kucera, D. Rastawicki, J. Dove, G. de Toma, J. Hao, S. Hill, H. S. Hudson, C. Marqué, and P. S. McIntosh (2010), Three-dimensional Morphology of a Coronal Prominence Cavity, The Astrophysical Journal, 724, 1133, doi:10.1088/0004-637x/724/2/1133.
  383. Gibson, S. E., T. A. Kucera, S. M. White, J. B. Dove, Y. Fan, B. C. Forland, L. A. Rachmeler, C. Downs, and K. K. Reeves (2016), FORWARD: A toolset for multiwavelength coronal magnetometry, Front. Astron. Space Sci, 3(8), doi:10.3389/fspas.2016.00008.
  384. Gibson, S. E. a. B. C. L. (1998a), A Time-dependent Three-dimensional Hydromagnetic Model of the Coronal Mass Ejection, Astrophys.Journal, 493, 460-473.
  385. Gibson, S. E. a. F. B. (1995), The Large-Scale Magnetic Field and Density Distribution in the Solar Minimum Corona, Journal of Geophysical Research, 100, 198651.
  386. Gibson, S. E. a. P. C. (1998b), Empirical Modeling of the Solar Corona Using Genetic Algorithms, Journal of Geophysical Research, 103, 14511.
  387. Gilbert, H. (2011), Ion‐Neutral Coupling in Solar Prominences, paper presented at AIP Conference Proceedings, 2011.
  388. Gilbert, H., D. Alexander, and R. Liu (2007a), Filament Kinking and Its Implications for Eruption and Re-formation, Solar Physics, 245(2), 287-309, doi:10.1007/s11207-007-9045-z.
  389. Gilbert, H., G. Kilper, and D. Alexander (2007b), Observational Evidence Supporting Cross-field Diffusion of Neutral Material in Solar Filaments, Astrophysical Journal, 671, 978-989, doi:10.1086/522884.
  390. Gilbert, H. R., J. T. Burkepile, A. J. Hundhausen, J. A. Darnell, and F. Bagenal (1999), A Study of the Prominence/Coronal Mass Ejection Correlation, 1999.
  391. Gilbert, H. R., A. G. Daou, D. Young, D. Tripathi, and D. Alexander (2008), The Filament-Moreton Wave Interaction of 2006 December 6, Astrophysical Journal, 685, 629-645, doi:10.1086/590545.
  392. Gilbert, H. R., C. S. Elizabeth, E. H. Thomas, R. M. MacQueen, and S. M. Patrick (2001a), Narrow Coronal Mass Ejections, The Astrophysical Journal, 550, 1093-1101.
  393. Gilbert, H. R., and T. E. Holzer (2004), Chromospheric Waves Observed in the He I Spectral Line (λ = 10830 Å): A Closer Look, Astrophysical Journal, 610, 572-587, doi:10.1086/421452.
  394. Gilbert, H. R., T. E. Holzer, and J. T. Burkepile (2001b), Observational Interpretation of an Active Prominence on 1999 May 1, Astrophysical Journal, 549, 1221-1230, doi:10.1086/319444.
  395. Gilbert, H. R., T. E. Holzer, J. T. Burkepile, and A. J. Hundhausen (2000), Active and Eruptive Prominences and Their Relationship to Coronal Mass Ejections, Astrophysics Journal, 537, 503-515.
  396. Gilbert, H. R., T. E. Holzer, B. J. Thompson, and J. T. Burkepile (2004), A Comparison of CME-Associated Atmospheric Waves Observed in Coronal (Fe XII 195 Å) and Chromospheric (He I 10830 Å) Lines, Astrophysical Journal, 607, 540-553, doi:10.1086/383231.
  397. Gilbert, H. R., H. H. Viggo, and E. H. Thomas (2002), Neutral Atom Diffusion in a Partially Ionized Prominence Plasma, The Astrophysical Journal, 577, 464-474.
  398. Gizon, L. (1998), A Forward Analysis of the Solar Core Rotation, Nice: Obs. de la Cote d'Azur, 1998.
  399. Goldbaum, N., M. P. Rast, I. Ermolli, J. S. Sands, and F. Berrilli (2009), The Intensity Profile of the Solar Supergranulation, Astrophysical Journal, 707, 67-73, doi:10.1088/0004-637X/707/1/67; eprintid: arXiv:0909.3310.
  400. Goldbaum, N. J., and M. P. Rast (2009), The Convective Signature of the Solar Supergranulation, 2009.
  401. Goode, P. (1995), Internal Structure and Rotation of the Sun, ESA-SP-376, Noordwijk: ESA Publications Division, 1995.
  402. Goossens, M., R. Soler, I. Arregui, and J. Terradas (2012), Analytic approximate seismology of propagating MHD waves in the solar corona, Astrophysical Journal, 760(2), doi:10.1088/0004-637x/760/2/98.
  403. Gopalswamy, N. (2013), STEREO and SOHO contributions to coronal mass ejection studies: some recent results, paper presented at International Symposium on Solar Terrestrial Physics, ASI Conference Series.
  404. Gopalswamy, N., et al. (1997), Tracking a CME from Cradle to Grave: A Multi-wavelength Analysis of the February 6-7, 1997 Event, 1997.
  405. Gopalswamy, N., I. Mann, J.-L. Bougeret, C. Briand, R. Lallement, D. Lario, P. Manoharan, K. Shibata, and D. F. Webb (2012a), Commission 49: Interplanetary Plasma and Heliosphere, paper presented at Proceedings of the International Astronomical Union.
  406. Gopalswamy, N., I. Mann, J. L. Bougeret, C. Briand, R. Lallement, D. Lario, P. K. Manoharan, K. Shibata, and D. F. Webb (2012b), Commission 49: Interplanetary Plasma and Heliosphere, paper presented at Proceedings of the International Astronomical Union.
  407. Gopalswamy, N., R. A. Mewaldt, and J. Torsti (2006), Solar eruptions and energetic particles, 385 pp., American Geophysical Union, Washington, DC, doi:10.1029/gm165.
  408. Gopalswamy, N., P. Mäkelä, H. Xie, S. Akiyama, and S. Yashiro (2009), CME interactions with coronal holes and their interplanetary consequences, Journal of Geophysical Research (Space Physics), 114, doi:10.1029/2008ja013686.
  409. Gopalswamy, N., H. Xie, P. Mäkelä, S. Yashiro, S. Akiyama, W. Uddin, A. K. Srivastava, N. C. Joshi, R. Chandra, and P. K. Manoharan (2013), Height of shock formation in the solar corona inferred from observations of type II radio bursts and coronal mass ejections, Advances in Space Research, 51(11), 1981-1989, doi:0.1016/j.asr.2013.01.006.
  410. Gopalswamy, N., H. Xie, S. Yashiro, S. Akiyama, P. Mäkelä, and I. G. Usoskin (2012c), Properties of Ground Level Enhancement Events and the Associated Solar Eruptions during Solar Cycle 23, Space Science Reviews, 171(1-4), 23-60, doi:10.1007/s11214-012-9890-4.
  411. Gopalswamy, N., S. Yashiro, S. Akiyama, and H. Xie (2017), Estimation of Reconnection Flux Using Post-eruption Arcades and Its Relevance to Magnetic Clouds at 1 AU, Solar Physics, 292(4), 65, doi:10.1007/s11207-017-1080-9.
  412. Gopalswamy, N., S. Yashiro, G. Michalek, H. Xie, R. P. Lepping, and R. A. Howard (2005), Solar source of the largest geomagnetic storm of cycle 23, Geophys.Res.L., 32, L12S09, doi:10.1029/2004gl021639.
  413. Gopalswamy, N. a. M. R. K. (1987), Simultaneous Radio and White Light Observations of the 1984 June 27 Coronal Mass Ejection Event, Solar Physics, 114, 347-362.
  414. Gopalswamy, N. a. M. R. K. (1989a), A slowly moving plasmoid associated with a filament eruption, Solar Physics, 122(Number 1 / March).
  415. Gopalswamy, N. a. M. R. K. (1989b), Radioheliograph and White-Light Coronagraph Studies of a Coronal Mass Ejection Event, Solar Physics, 122, 145-173.
  416. Gopalswamy, N. a. Y. H. (1999), Coronal Dimming Associated with a Giant Prominence Eruption, in press.
  417. Goryaev, F., V. Slemzin, L. Vainshtein, and D. R. Williams (2014), Study of EUV emission and properties of a coronal streamer from PROBA2/SWAP, Hinode/EIS and Mauna Loa Mk4 observations, ApJ, 781(2), 14, doi:10.1088/0004-637x/781/2/100.
  418. Gosling, G. T., R. T. Hansen, and S. J. Bame (1971), Solar Wind Speed Distributions: 1962-1970, Journal of Geophysical Research, 76 (7), 1811-1815.
  419. Gosling, J. T., and et al. (1995), The Band of Solar Wind Variability at Low Heliographic Latitudes Near Solar Activity Minimum: Plasma Results from the Ulysses Rapid Latitude Scan, Geophysical Research Letters, 22 (23), 3329.
  420. Grall, R. R., W. A. Coles, M. T. Klinglesmith, A. R. Breen, P. J. S. Williams, J. Markkanen, and R. Esser (1996), Rapid Acceleration of the Polar Solar Wind, Letters to Nature, 379, 429-432.
  421. Grechnev, V., I. Kuzmenko, A. Uralov, I. Chertok, and A. Kochanov (2013), Microwave Negative Bursts as Indications of Reconnection between Eruptive Filaments and Large-Scale Coronal Magnetic Environment, Publications of the Astronomical Society of Japan, 65(1), s10, doi:10.1093/pasj/65.sp1.S10.
  422. Grechnev, V., A. Uralov, I. Chertok, I. Kuzmenko, A. N. Afanasyev, N. Meshalkina, S. Kalashnikov, and Y. Kubo (2012), Coronal Shock Waves, EUV Waves, and Their Relation to CMEs. I. Reconciliation of “EIT Waves”, Type II Radio Bursts, and Leading Edges of CMEs, in Energy Storage and Release through the Solar Activity Cycle, edited, pp. 127-154, Springer, doi:10.1007/978-1-4614-4403-9_10.
  423. Grechnev, V., A. Uralov, V. Slemzin, I. Chertok, I. Kuzmenko, and K. Shibasaki (2008), Absorption Phenomena and a Probable Blast Wave in the 13 July 2004 Eruptive Event, Solar Physics, 253(1), 263-290, doi:10.1007/s11207-008-9178-8.
  424. Grechnev, V. V., V. I. Kiselev, A. M. Uralov, K.-L. Klein, and A. A. Kochanov (2017), The 26 December 2001 Solar Eruptive Event Responsible for GLE63: III. CME, Shock Waves, and Energetic Particles, Solar Physics, 292(8), 102, doi:10.1007/s11207-017-1122-3.
  425. Grechnev, V. V., I. V. Kuzmenko, I. M. Chertok, and A. M. Uralov (2011), Solar flare-related eruptions followed by long-lasting occultation of the emission in the He II 304 Å line and in microwaves, Astronomy Reports, 55(7), 637-648, doi:10.1134/s1063772911070031.
  426. Grechnev, V. V., A. M. Uralov, V. G. Zandanov, N. Y. Baranov, and K. Shibasaki (2006), Observations of Prominence Eruptions with Two Radioheliographs, SSRT, and NoRH, Publications of the Astronomical Society of Japan, 58, 69-84, doi:10.1093/pasj/58.1.69.
  427. Green, L. M., A. J. Wallace, and B. Kliem (2012), Hinode Observations of an Eruption from a Sigmoidal Active Region, paper presented at Astronomical Society of the Pacific Conference Series.
  428. Guhathakurta, M., R. R. Fisher, and R. C. Altrock (1993), Large-Scale Coronal Temperature and Density Distributions, 1984-1992, The Astrophysical Journal, 414, L145-L148.
  429. Guhathakurta, M., R. R. Fisher, and K. Strong (1996), Observations and Physical Interpretations of Coronal Rays from White Light, Soft X-ray (FeX) and Green (FeXIV) Lines Analyses, Solar Wind Eight, 125-128.
  430. Guhathakurta, M., A. Fludra, S. E. Gibson, D. Biesecker, and R. Fisher (1999), Physical properties of a coronal hole from a coronal diagnostic spectrometer, Mauna Loa coronagraph, and LASCO observations during the Whole Sun Month, Journal of Geophysical Research, 104 A5, 9801.
  431. Guhathakurta, M., G. J. Rottman, R. R. Fisher, F. Q. Orrall, and R. C. Altrock (1992), Coronal Density and Temperature Structure from Coordinated Observations Associated with the Total Solar Eclipse of 1988 March 18, The Astrophysical Journal, 388, 633-643.
  432. Guseva, S., M. Fat’yanov, and A. Shramko (2015), The heliospheric sheet configuration according to the coronal ray synoptic maps in solar activity cycles 23 and 24, Geomagnetism and Aeronomy, 55(3), 287-294, doi:10.1134/s0016793215030081.
  433. Gutiérrez, H., L. Taliashvili, and A. Lazarian (2018), Magnetic evolution linked to the interrelated activity complexes involving transequatorial coronal holes, Monthly Notices of the Royal Astronomical Society, 479(1), 1309-1319, doi:10.1093/mnras/sty1650.
  434. Guttenbrunner, S., A. Hanslmeier, D. Utz, B. Lemmerer, I. Piantschitsch, and S. Thonhofer (2014), Solar Ca II K plage regions as proxies for magnetic fields of solar like stars, Central European Astrophysical Bulletin, 38, 81.
  435. Guzik, J. A. (1998), Solar Structure: Models and Inferences from Helioseismology, ESA-SP-418, Noordwijk: ESA Publications Division, 1998.
  436. Guzik, J. A. (2006), Reconciling the revised solar abundances with helioseismic constraints, 2006.
  437. Guzik, J. A., and K. Mussack (2010), Exploring mass loss, low-Z accretion, and convective overshoot in solar models to mitigate the solar abundance problem, doi:10.1088/0004-637X/713/2/1108.
  438. Guzik, J. A., C. Neuforge-Verheecke, A. C. Young, R. I. Epstein, F. M. Poulin, and J. R. Schissel (2001), Standard and Non-Standard Solar Models, Sol Phys, 200, 305-321.
  439. Guzik, J. A., and L. S. Watson (2004), Can Recently Derived Solar Photospheric Abundances BE Consistent with Helioseismology?, SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, 559, 456.
  440. Guzik, J. A., L. S. Watson, and A. N. Cox (2005), Can Enhanced Diffusion Improve Helioseismic Agreement for Solar Models with Revised Abundances?, ApJ, 627, 1049, doi:10.1086/430438.
  441. Habbal, H. (2001), Are solar maximum fan streamers a consequence of twisting sheet structures?, A&A, 465, L47-L50; L47-L50.
  442. Habbal, H. (2007), The long-term stability of the visible F corona at heights of 3-6 Rsun, A&A, 471, L47-L50; L47-L50.
  443. Habbal, S. R., A. Mossman, R. Gonzalez, and R. Esser (1996), Radio, Visible, and X ray Emission Preceding and Following a Coronal Mass Ejection, Journal of Geophysical Research; 101 (A9), 19.
  444. Habbal, S. R., W. Richard, and A. Jean (2001), On the Predominance of the Radial Component of the Magnetic Field in the Solar Corona, The Astrophysical Journal, 558, 852-858.
  445. Habbal, S. R., I. Scholl, and H. Morgan (2009), IfA Catalogs of Solar Data Products, 2009.
  446. Habbal, S. R., and R. Woo (2001), Connecting the Sun and the Solar Wind: Comparison of the Latitudinal Profiles of Coronal and Ulysses Measurements of the Fast Wind, Astrophysical Journal, 549, L253-L256, doi:10.1086/319172.
  447. Habbal, S. R. a. R. E. (1994), Flow Properties of the Solar Wind Obtained from White Light Data and a Two-Fluid Model, in Solar Dynamic Phenomena and Solar Wind Consequences, Proc.of the Third SOHO Workshop, 26-29 Sept. 1994, ESA SP-373.
  448. Haberreiter, M. (2010), Mechanisms for total and spectral solar irradiance variations, edited, p. 5078.
  449. Haberreiter, M. (2011a), Solar EUV Spectrum Calculated for Quiet Sun Conditions, Solar Physics, 274, 473-479, doi:10.1007/s11207-011-9767-9; eprintid: arXiv:1103.4933.
  450. Haberreiter, M. (2011b), Towards the reconstruction of the EUV irradiance for solar cycle 23, Proceedings of the International Astronomical Union, 7(S286), 97-100.
  451. Haberreiter, M., C. Verbeeck, V. Delouille, and I. Ermolli (2013), Modeling the Variations of the Solar EUV Spectrum, paper presented at EGU General Assembly Conference Abstracts.
  452. Hansen, R. a. S. H. (1975a), Global Distribution of Filaments During Solar Cycle No. 20, Solar Physics, 44, 225-230.
  453. Hansen, R. T. (1969), Coronal Intensity Variations, Sky and Telescope, 37 (5), 297-298.
  454. Hansen, R. T., C. J. Garcia, R. R. M. Grognard, and K. V. Sheridan (1971a), A Coronal Disturbance Observed Simultaneously with a White-Light Coronameter and the 80 mhz Culgoora Radioheliograph, Proc.Astron.Soc.Aust., 2 (1), 57-60.
  455. Hansen, R. T., C. J. Garcia, S. F. Hansen, and H. G. Loomis (1969a), Brightness Variations of the White Light Corona During the Years 1964-67, Solar Physics, 7, 417-433.
  456. Hansen, R. T., C. J. Garcia, S. F. Hansen, and E. Yasukawa (1974a), Abrupt Depletions of the Inner Corona, Publ.Astron.Soc.Pacific, 86, 500-515.
  457. Hansen, R. T., S. F. Hansen, and C. J. Garcia (1970), Mauna Loa Coronagraph Observations Around the 7 March 1970 Eclipse, Solar Physics, 15, 387-393.
  458. Hansen, R. T., S. F. Hansen, C. J. Garcia, and D. E. Trotter (1971b), K-Coronal Enhancements and Chromospheric Plages, Solar Physics, 18, 271-275.
  459. Hansen, R. T., S. F. Hansen, and H. G. Loomis (1969b), Differential Rotation of the Solar Electron Corona, Solar Physics, 10, 135-149.
  460. Hansen, R. T., S. F. Hansen, and S. Price (1966), An Example of Meteorological Considerations in Selecting an Observatory Site in Hawaii, Publ.Astron.Soc.Pacific, 78, 14-29.
  461. Hansen, R. T., S. F. Hansen, and C. Sawyer (1976), Long-Lived Coronal Structures and Recurrent Geomagnetic Patterns in 1974, Planet, Space Sci., 24, 381-388.
  462. Hansen, S. F., R. T. Hansen, and C. J. Garcia (1972), Evolution of Coronal Helmets During the Ascending Phase of Solar Cycle 20, Solar Physics, 26, 202-224.
  463. Hansen, S. F., C. Sawyer, and R. T. Hansen (1974b), K Corona and Magnetic Sector Boundaries, Geophysical Research Letters, 1 (1), 13-15.
  464. Hansen, S. F. a. R. T. H. (1975b), Differential Rotation and Reconnection as Basic Causes of Some Coronal Reorientations, Solar Physics, 44, 503-508.
  465. Hansen, S. F. a. R. T. H. (1977), Reorientation of Global Coronal Magnetic Fields Due to Differential Rotation, Solar Physics, 51, 169-174.
  466. Hansteen, V. H., and M. Velli (2012), Solar wind models from the chromosphere to 1 AU, Space science reviews, 172(1-4), 89-121, doi:10.1007/s11214-012-9887-z.
  467. Hao, Q., C. Fang, W. Cao, and P. Chen (2015), Statistical Analysis of Filament Features Based on the Hα Solar Images from 1988 to 2013 by Computer Automated Detection Method, The Astrophysical Journal Supplement Series, 221(2), 33, doi:10.1088/0067-0049/221/2/33.
  468. Hao, Q., C. Fang, and P. F. Chen (2013), Developing an Advanced Automated Method for Solar Filament Recognition and Its Scientific Application to a Solar Cycle of MLSO Hα Data, Solar Physics, 1-20, doi:10.1007/s11207-013-0285-9.
  469. Harder, J., J. Fontenla, O. White, G. Rottman, and T. W. and (2005a), Solar Spectral Irradiance Variability Comparisons of the SORCE SIM Instrument with Monitors of Solar Activity and Spectral Synthesis, Journal of the Italian Astronomical Society, 76(Solar Variability and Earth Climate Symposium Proceedings), 735.
  470. Harder, J. W., S. Beland, and M. Snow (2019), SORCE‐Based Solar Spectral Irradiance (SSI) Record for Input Into Chemistry‐Climate Studies, Earth and Space Science, 6(12), 2487-2507, doi:10.1029/2019ea000737.
  471. Harder, J. W., J. Fontenla, G. Kopp, E. Richard, and T. Woods (2005b), The spectral composition of TSI as measured by the SORCE SIM solar spectral radiometer, paper presented at AGU Fall Meeting Abstracts, 2005.
  472. Harrison, R. A. (1986), Solar Coronal Mass Ejections and Flares, Astronomy & Astrophysics, 162, 283-291.
  473. Harrison, R. A. (1994), The Inter Agency Consultative Group Campaign to Study Coronal Mass Ejection Onsets, in Solar Dynamic Phenomena and Solar Wind Consequences, Proc.of the Third SOHO Workshop, 26-29 Sept. 1994, ESA SP-373.
  474. Harrison, R. A., et al. (1992), first Millimetre Wavelength Observations of an Active Solar Prominence Observed During the July 11, 1991 Total Solar Eclipse, Nature, (358), 308-310.
  475. Harrison, R. A., E. Hildner, A. J. Hundhausen, D. G. Sime, and G. M. Simnett (1990a), The Launch of Solar Coronal Mass Ejections: Results from the Coronal Mass Ejection Onset Program, Journal of Geophysical Research, 95 (A2), 917-937.
  476. Harrison, R. A., D. G. Sime, and G. Pearce (1990b), The Surge Events of June 28 and October 30, 1980, Astron.Astrophys., 238, 347-353.
  477. Harrison, R. A., P. W. Waggett, R. D. Bentley, K. J. H. Phillips, M. Bruner, M. Dryer, and G. M. Simnett (1985), Solar Coronal Mass Ejections and Flares, Solar Physics, 97, 387-400.
  478. Harrison, R. A. a. D. G. S. (1989a), Comments on Coronal Mass Ejection Onset Studies, Astron.Astrophys., 208, 274.
  479. Harrison, R. A. a. D. G. S. (1989b), The Launch of Coronal Mass Ejections: Low Coronal X-ray and White Light Observations, Journal of Geophysical Research, 94, 2333-2344.
  480. Harvey, J. (2015), Two Centuries of Solar Polarimetry, paper presented at IAU Symposium.
  481. Harvey, J. W., F. Hill, R. Hubbard, J. R. Kennedy, J. W. Leibacher, J. A. Pintar, P. A. Gilman, R. W. Noyes, J. Toomre, and R. K. Ulrich (1996), The Global Oscillation Network Group (GONG) Project, Science, 272(5266), 1284-1286.
  482. Hassler, D. M., L. Strachan, L. D. Gardner, J. L. Kohl, M. Guhathakurta, R. R. Fisher, and K. Strong (1994), Ly-Alpha and White Light Observations of a CME During the Spartan 201-1 Mission, in Solar Dynamic Phenomena and Solar Wind Consequences, Proc.of the Third SOHO Workshop, 26-29 Sept. 1994, ESA SP-373.
  483. Hassler, D. M., K. Wilhelm, P. Lemaire, and U. Schuhle (1997), Observations of Polar Plumes with the SUMER Instrument on SOHO, Solar Physics, 175, 375-391.
  484. Hiei, E., A. J. Hundhausen, and J. T. Burkepile (1996), Formation of an X-Ray Helmet Structure After a Coronal Mass Ejection, in Magnetic Reconnection in the Solar Atmosphere, ASP Conference Series, 111, 383-387.
  485. Hiei, E., A. J. Hundhausen, and D. G. Sime (1993), Reformation of a Coronal Helmet Streamer by Magnetic Reconnection After a Coronal Mass Ejection, Geophysical Research Letters, 20 (24), 2785-2788.
  486. Hiei, E., H. H. a. M. Takahashi, A. J. Hundhausen, J. Burkepile, and D. G. Sime (1995), Sudden Disappearance of a High Latitude Prominence, Its Related Soft X-Ray Brightening, and Coronal Mass Ejection, Proc.of the 3rd China-Japan Seminar on Solar Physics, 222-227.
  487. Hildner, E., J. T. Gosling, R. T. Hansen, and J. D. Bohlin (1975), The Sources of Material Comprising a Mass Ejection Coronal Transient, Solar Physics, 45, 363-376.
  488. Hill, F., G. Fischer, S. Forgach, J. Grier, J. W. Leibacher, H. P. Jones, P. B. Jones, R. Kupke, R. T. Stebbins, and D. W. Clay (1994), The Global Oscillation Network Group site survey, 2: Results, Solar Physics, 152(2), 351-379.
  489. Hill, S. M., B. C. Christopher, J. Burkepile, P. T. Gallagher, and G. Detoma (2003), The Polar Crown Filament Eruption and Associated CME of 2003 February 18, AGU Fall Meeting Abstracts, 21, 04.
  490. Hill, S. M. H. (2004), Arcade and Supra-Arcade Structures During the Record X28 Solar Flare of 2003 November 04, 2004.
  491. Hillier, A., H. Isobe, K. Shibata, and T. Berger (2012), Numerical Simulations of the Magnetic Rayleigh-Taylor Instability in the Kippenhahn-Schlüter Prominence Model. II. Reconnection-triggered Downflows, The Astrophysical Journal, 756, 110, doi:10.1088/0004-637X/756/2/110; eprintid: arXiv:1106.2613.
  492. Hindman, B. W., and R. Jain (2008), The Generation of Coronal Loop Waves below the Photosphere by p-Mode Forcing, The Astrophysical Journal, 677, 769-780, doi:10.1086/528956; eprintid: arXiv:0805.1942.
  493. Hochedez, J.-F. o., C. Frdric, V. Erwin, B. David, and C. Pierre (2000), MID-TERM VARIATIONS IN THE EXTREME UV CORONA : THE EIT / SOHO PERSPECTIVE, EUROPEAN SPACE AGENCY -PUBLICATIONS- ESA SP 2000, 463, 79-84.
  494. Hock, R., and F. G. Eparvier (2009), Properties of Supergranules from the Precision Solar Photometric Telescope (PSPT) Ca II K Images, 2009.
  495. Holzer, T. E., H. R. Gilbert, D. F. Elmore, and R. M. MacQueen (2000), A New Method of Determining Line-of-Sight Velocity Using MLSO/CHIP He I 1083 nm Observations, 2000.
  496. Hood, A. W., M. Ruderman, D. J. Pascoe, I. De Moortel, J. Terradas, and A. N. Wright (2013), Damping of kink waves by mode coupling. I. Analytical treatment, Astronomy and Astrophysics, 551, 39, doi:10.1051/0004-6361/201220617.
  497. Hou, J., A. G. de Wijn, and S. Tomczyk (2013), Design and measurement of the Stokes polarimeter for the COSMO K-coronagraph, The Astrophysical Journal, 774(1), 85, doi:10.1088/0004-637x/774/1/85.
  498. Howard, T. (2011), Associated Phenomena, Coronal Mass Ejections, 139-173, doi:10.1007/978-1-4419-8789-1_7.
  499. Huang, C., Y. Yan, Y. Zhang, B. Tan, and G. Li (2012), The Morphologic Properties of Magnetic Networks over the Solar Cycle 23, The Astrophysical Journal, 759(2), 106, doi:10.1088/0004-637x/759/2/106.
  500. Hudson, H. (1996), YOHKOH OBSERVATIONS OF CORONAL MASS EJECTIONS, Magnetodynamic Phenomena in the Solar Atmosphere: Prototypes of Stellar Magnetic Activity: Proceedings of the 153rd Colloquium of the International Astronomical Union, Held in Makuhari, Near Tokyo, May 22-27, 1995, 89, 96-96.
  501. Hudson, H. S., L. W. Acton, D. Alexander, S. L. Freeland, J. R. Lemen, and K. L. Harvey (1996), Yohkoh/SXT Soft X-Ray Observations of Sudden Mass Loss from the Solar Corona, in Solar Wind Eight, AIP, 88-91.
  502. Hudson, H. S., J. L. Bougeret, and J. Burkepile (2006), Coronal Mass Ejections: Overview of Observations, Space Science Reviews, 123, 13-30, doi:10.1007/s11214-006-9009-x.
  503. Hudson, H. S., and D. F. Webb (1997), Soft X-Ray Signatures of Coronal Ejections, in Coronal Mass Ejections, Geophysical Monograph, 99, 27-38.
  504. Hundhausen, A. J. (1977), An Interplanetary View of Coronal Holes, in Coronal Holes and High Speed Wind Streams, Colorado Associated Press.
  505. Hundhausen, A. J. (1978), Solar Wind Spatial Structure: The Meaning of Latitude Gradients in Observations Averaged Over Solar Longitude, Journal of Geophysical Research, 83 (A9), 4186-4192.
  506. Hundhausen, A. J. (1997), Coronal Mass Ejections, in Cosmic Winds and the Heliosphere, Tucson: The Univ.of Arizona Press, 259-296.
  507. Hundhausen, A. J. (1999), Coronal Mass Ejections: A Summary of SMM Observations from 1980 and 1984-1989, 141-200.
  508. Hundhausen, A. J., R. T. Hansen, and S. F. Hansen (1981), Coronal evolution during the sunspot cycle - Coronal holes observed with the Mauna Loa K-coronameters, Journal of Geophysical Research, 86, 2079-2094.
  509. Hundhausen, A. J., D. G. Sime, R. T. Hansen, and S. F. Hansen (1980), Polar Coronal Holes and Cosmic Ray Modulation, Science, 207, 761-763.
  510. Hundhausen, A. J. a. T. E. H. (1980), I. The Quiet Sun. Large-Scale Solar Magnetic Fields, Coronal Holes and High-Speed Solar Wind Streams, Phil.Trans.R.Soc.Lond., 297, 521-529.
  511. Illing, R. M. E., and A. J. Hundhausen (1985), Observation of a coronal transient from 1.2 to 6 solar radii, Journal of Geophysical Research, 90, 275-282.
  512. Imamura, T., M. Tokumaru, H. Isobe, D. Shiota, H. Ando, M. Miyamoto, T. Toda, B. Häusler, M. Pätzold, and A. Nabatov (2014), Outflow Structure of the Quiet Sun Corona Probed by Spacecraft Radio Scintillations in Strong Scattering, The Astrophysical Journal, 788(2), 117, doi:10.1088/0004-637x/788/2/117.
  513. Insley, J. E. V. M. a. R. A. H. (1995), The differential rotation of the corona as indicated by coronal holes, Solar Physics, 160(Number 1 / August).
  514. Ippolito, A. (2018), foF2 variations measured by the Rome observatory during solar minimum in the last three solar cycles, Annals of Geophysics, 61, 19, doi:10.4401/ag-7762.
  515. Ivanov, E. V. V. N. O., and E. V. N. a. N. V. Kutilina (1999), RELEVANCE OF CME TO THE STRUCTURE OF LARGE-SCALE SOLAR MAGNETIC FIELDS, Solar Physics, 184(Number 2 / February).
  516. Jackson, B. V. (1981), Forerunners: Early Coronal Manifestations of Solar Mass Ejection Events, Solar Physics, 73, 133-144.
  517. Jain, K., S. C. Tripathy, A. Bhatnagar, and B. Kumar (2000), Empirical estimate of p-mode frequency shift for solar cycle 23, Solar Physics, 192(1), 487-494.
  518. Jiang, Y., Y. Shen, B. Yi, J. Yang, and J. Wang (2008), Magnetic Interaction: A Transequatorial Jet and Interconnecting Loops, The Astrophysical Journal, 677(1), 699-703, doi:10.1086/529417.
  519. Jiang, Y., J. Yang, H. Wang, H. Ji, Y. Liu, H. Li, and J. Li (2014), Interaction and Merging of two Sinistral Filaments, The Astrophysical Journal, 793(1), 14, doi:10.1088/0004-637x/793/1/14.
  520. Jiang, Y., J. Yang, R. Zheng, Y. Bi, and X. Yang (2009), A Narrow Streamer-Puff Coronal Mass Ejection from the Nonradial Eruption of an Active-Region Filament, The Astrophysical Journal, 693(2), 1851-1858, doi:10.1088/0004-637x/693/2/1851.
  521. Jiang, Y., L. Yang, K. Li, and D. Ren (2007a), Coronal and Chromospheric Dimmings during a Halo-Type CME Event, The Astrophysical Journal Letters, 662(2), L131-L134; L131-L134, doi:10.1086/519490.
  522. Jiang, Y., L. Yang, K. Li, and D. Ren (2007b), Dimmings during CME Event, The Astrophysical Journal Letters, 662, L131-L134, doi:10.1086/519490.
  523. Jiang, Y., L. Yang, and Y. Shen (2007c), Magnetic Interaction: An Erupting Filament and a Remote Coronal Hole, Astrophysics Journal Letters, 667, L105-L108, doi:10.1086/521949.
  524. Jibben, P. R., K. K. Reeves, and Y. Su (2016), Evidence for a Magnetic Flux Rope in Observations of a Solar Prominence-Cavity System, Frontiers in Astronomy and Space Sciences, 3, 10, doi:10.3389/fspas.2016.00010.
  525. Jimenez-Reyes, S. J., T. Corbard, P. L. Palle, T. R. Cortes, and S. Tomczyk (2001), Analysis of the solar cycle and core rotation using 15 years of Mark-I observations: 1984-1999; I. The solar cycle, Astron.and Astrophys., 379, 622-633.
  526. Jiménez-Reyes, S. J., T. Corbard, P. L. Pallé, and S. Tomczyk (2001), LOWL p-mode frequencies and their variation with solar activity, ESA SP-464, Noordwijk, 2001.
  527. Jones, G. H., M. M. Knight, K. Battams, D. C. Boice, J. Brown, S. Giordano, J. Raymond, C. Snodgrass, J. K. Steckloff, and P. Weissman (2018), The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets, Space Science Reviews, 214, doi:10.1007/s11214-017-0446-5.
  528. Jones, H. P. (2003), Data Calibration and Analysis for He I 1083 nm Imaging Spectroscopy, Solar Physics, 218(1), 1-16.
  529. Jones, S. I., V. M. Uritsky, J. M. Davila, and V. N. Troyan (2020), Improving Coronal Magnetic Field Models Using Image Optimization, The Astrophysical Journal, 896, 57, doi:10.3847/1538-4357/ab8cb9.
  530. Joshi, A. D., S.-C. Bong, and N. Srivastava (2013), A Statistical Study on Characteristics of Disappearing Prominences, Proceedings of the International Astronomical Union, 8(S300), 422-423, doi:10.1017/s174392131301137x.
  531. Joshi, A. D., and N. Srivastava (2011), Acceleration of Coronal Mass Ejections from Three-dimensional Reconstruction of STEREO Images, The Astrophysical Journal, 739, 8, doi:10.1088/0004-637x/739/1/8.
  532. Joshi, A. D., N. Srivastava, and S. K. Mathew (2010), Automated Detection of Filaments and Their Disappearance Using Full-Disc Hα Images, Solar Physics, 262(2), 425-436, doi:10.1007/s11207-010-9528-1.
  533. Judge, P., B. Berkey, A. Boll, P. Bryans, J. Burkepile, P. Cheimets, E. DeLuca, G. De Toma, K. Gibson, and L. Golub (2019), Solar eclipse observations from the ground and air from 0.31 to 5.5 microns, Solar Physics, 294(11), 1-23, doi:10.1007/s11207-019-1550-3.
  534. Judge, P. G., J. Burkepile, G. de Toma, and M. Druckmueller (2010), Historical eclipses and the recent solar minimum corona, Arxiv preprint arXiv:1001.5278.
  535. Judge, P. G., S. Habbal, and E. Landi (2013), From Forbidden Coronal Lines to Meaningful Coronal Magnetic Fields, Solar Physics, 288(2), 467-480, doi:10.1007/s11207-013-0309-5.
  536. Kaghashvili, E. K. (2013), Alfvén waves in shear flows: Driven wave formalism, Journal of Plasma Physics, 79(5), 797-804, doi:10.1017/s0022377813000500.
  537. Kaghashvili, E. K., R. A. Quinn, and J. V. Hollweg (2009), Driven Waves as a Diagnostics Tool in the Solar Corona, The Astrophysical Journal, 703, 1318-1322, doi:10.1088/0004-637x/703/2/1318.
  538. Kahler, S. W. (1987), Observations of Coronal Mass Ejections Near the Sun, Invited Review, Solar Wind 6 Conference, Estes Park, Colorado August 1987.
  539. Kahler, S. W. (1992a), Solar Flares and Coronal Mass Ejections, Annu.Rev.Astron.Astrophys, 30, 113-141.
  540. Kahler, S. W., N. R. Sheeley, Jr, and M. Liggett (1989), Coronal Mass Ejections and Associated X-Ray Flare Durations, The Astrophysical Journal, 344, 1026-1033.
  541. Kahler, S. W. a. A. J. H. (1992b), The Magnetic Topology of Solar Coronal Structures Following Mass Ejections, Journal of Geophysical Research, 97 (A2), 1619-1631.
  542. Kamalabadi, F. (2009), Multidimensional image reconstruction in astronomy, Signal Processing Magazine, IEEE, 27(1), 86-96, doi:10.1109/msp.2009.934717.
  543. Kano, R., et al. (2008), Vertical Temperature Structures of the Solar Corona Derived with the Hinode X-Ray Telescope, Publications of the Astronomical Society of Japan, 60, 827, doi:10.1093/pasj/60.4.827.
  544. Karachik, N. V., and A. A. Pevtsov (2014), Properties of Magnetic Neutral Line Gradients and Formation of Filaments, Solar Physics, 289(3), 821-830, doi:10.1007/s11207-013-0362-0.
  545. Kariyappa, R. (2000), CaII K Imaging to Understand UV Irradiance Variability, JApA, 21, 293.
  546. Karna, N., A. Savcheva, K. Dalmasse, S. Gibson, S. Tassev, G. de Toma, and E. E. DeLuca (2019), Forward Modeling of a Pseudostreamer, The Astrophysical Journal, 883, doi:10.3847/1538-4357/ab3c50.
  547. Keller, C. U. (2000), New Initiatives for Synoptic Observations, JApA, 21, 127.
  548. Khomenko, E., and P. S. Cally (2012), Numerical simulations of conversion to Alfven waves in sunspots, The Astrophysical Journal, 746, 68, doi:10.1088/0004-637x/746/1/68.
  549. Kiefer, M., U. Grabowski, W. Mattig, and M. Stix (2000), Convective overshooting on the Sun: radiative effects, A&A, 355, 381-393.
  550. Kilper, G., and J. Davila (2010), A Complete Observational Picture of Quiet Sun Prominence Eruptions, paper presented at American Astronomical Society Meeting Abstracts, 2010.
  551. Kilper, G., H. Gilbert, and D. Alexander (2009), Mass Composition in Pre-Eruption Quiet Sun Filaments, 2009.
  552. Kim, I., and V. Popov (2015), Manifestations of electric currents observed in the K-corona, Geomagnetism and Aeronomy, 55(8), 1131-1133, doi:10.1134/s0016793215080137.
  553. Kim, I., V. Popov, D. Lisin, and A. Osokin (2013), Observations of neutral hydrogen in the corona, Geomagnetism and Aeronomy, 53(7), 901-903, doi:10.1134/s0016793213070104.
  554. Kim, Y. H., S. C. Bong, Y. D. Park, K. S. Cho, and Y. J. Moon (2009), NEAR-SIMULTANEOUS OBSERVATIONS OF XPE, CME, AND TYPE II BURST, The Astrophysical Journal, 705, 1721-1729, doi:10.1088/0004-637x/705/2/1721.
  555. Klein, K. L., and Z. Mouradian (2002), The dynamics of an erupting prominence, Astron.and Astrophys., 381, 683-693.
  556. Klimchuk, J. A., L. W. Acton, K. L. Harvey, H. S. Hudson, K. L. Kluge, D. G. Sime, K. T. Strong, and W. Ta (1994), Coronal Eruptions Observed by Yohkoh, X-Ray Solar Physics from Yohkoh, University Academy Press Inc.
  557. Ko, Y., and J. C. Raymond (2007), Physical Properties in the Post-CME Current Sheet, AGU Fall Meeting Abstracts, 41, 04.
  558. Ko, Y.-K., J. Li, P. Riley, and J. C. Raymond (2008), Large-Scale Coronal Density and Abundance Structures and Their Association with Magnetic Field Structure, The Astrophysical Journal, 683(2), 1168-1179, doi:10.1086/589873.
  559. Ko, Y.-K., J. D. Moses, J. M. Laming, L. Strachan, S. Tun Beltran, S. Tomczyk, S. E. Gibson, F. Auchère, R. Casini, and S. Fineschi (2016), Waves and Magnetism in the Solar Atmosphere (WAMIS), Frontiers in Astronomy and Space Sciences, 3, 1, doi:10.3389/fspas.2016.00001.
  560. Ko, Y.-K., K. Muglach, Y.-M. Wang, P. R. Young, and S. T. Lepri (2014), Temporal Evolution of Solar Wind Ion Composition and their Source Coronal Holes during the Declining Phase of Cycle 23. I. Low-latitude Extension of Polar Coronal Holes, The Astrophysical Journal, 787, 121, doi:10.1088/0004-637x/787/2/121.
  561. Ko, Y. K., et al. (2000), SOHO/UVCS Observations of a Coronal Jet During the Third Whole Sun Month Campaign, 2000.
  562. Ko, Y. K., et al. (2005), Multialtitude Observations of a Coronal Jet during the Third Whole Sun Month Campaign, Astrophysical Journal, 623, 519-539, doi:10.1086/428479.
  563. Ko, Y. K., et al. (2004), Multi-Altitude Observations of a Coronal Jet, 2004.
  564. Ko, Y. K., J. C. Raymond, J. Lin, G. Lawrence, J. Li, and A. Fludra (2003), Dynamical and Physical Properties of a Post-CME Current Sheet, 2003.
  565. Ko, Y. K., J. C. Raymond, B. Vrsnak, and E. Vujic (2010), Modeling UV and X-ray Emission in a Post-coronal Mass Ejection Current Sheet, The Astrophysical Journal, 722, 625, doi:10.1088/0004-637x/722/1/625.
  566. Kocharov, L., K. S. Cho, and E. Valtonen (2011), An Analytical Model for the Coronal Component of Major Solar Energetic Particle Events, The Astrophysical Journal, 735, 4, doi:10.1088/0004-637x/735/1/4.
  567. Kocharov, L., M. Pesce-Rollins, T. Laitinen, A. Mishev, P. Kühl, A. Klassen, M. Jin, N. Omodei, F. Longo, and D. F. Webb (2020), Interplanetary Protons versus Interacting Protons in the 2017 September 10 Solar Eruptive Event, The Astrophysical Journal, 890(1), 13, doi:10.3847/1538-4357/ab684e.
  568. Kocharov, L., S. Pohjolainen, A. Mishev, M. J. Reiner, J. Lee, T. Laitinen, L. V. Didkovsky, V. J. Pizzo, R. Kim, and A. Klassen (2017), Investigating the Origins of Two Extreme Solar Particle Events: Proton Source Profile and Associated Electromagnetic Emissions, The Astrophysical Journal, 839(2), 79.
  569. Kohl, J. L. L. D. G., L. Strachan, and R. F. a. M. Guhathakurta (1995), Spartan 201 coronal spectroscopy during the polar passes of ulysses, Space Science Reviews, Volume 72(Numbers 1-2 / April).
  570. Koleva, K., M. S. Madjarska, P. Duchlev, C. J. Schrijver, J. C. Vial, E. Buchlin, and M. Dechev (2012), Kinematics and helicity evolution of a loop-like eruptive prominence, Astronomy & Astrophysics, 540, 7, doi:10.1051/0004-6361/201118588.
  571. Komm, R., I. De Moortel, Y. Fan, S. Ilonidis, and O. Steiner (2013), Sub-photosphere to solar atmosphere connection, Space Science Reviews, 196(1-4), 167-199, doi:10.1007/s11214-013-0023-5.
  572. Kong, D.-F., Z.-N. Qu, and Q.-L. Guo (2015), The north-south asymmetry of solar filaments separately at low and high latitudes in solar cycle 23, Research in Astronomy and Astrophysics, 15(1), 77, doi:10.1088/1674-4527/15/1/008.
  573. Koomen, M., R. Howard, R. Hansen, and S. Hansen (1974), The Coronal Transient of 16 June 1972, Solar Physics, 34, 447-452.
  574. Kosovichev, A., S. Basu, J. Christensen-Dalsgaard, A. Eff-Darwich, D. Gough, C. Iglesias, F. Pérez-Hernández, F. Rogers, T. Sekii, and H. Shibahashi (1995), Working Group 9-Interior Structure and Inversions, paper presented at Helioseismology.
  575. Koutchmy, S., V. Slemzin, B. Filippov, J.-C. Noens, D. Romeuf, and L. Golub (2008), Analysis and interpretation of a fast limb CME with eruptive prominence, C-flare, and EUV dimming, Astronomy & Astrophysics, 483(2), 599-608.
  576. Kramar, M., J. Davila, H. Xie, and S. Antiochos (2011), On the influence of CMEs on the global 3-D coronal electron density, Annales Geophysicae-Atmospheres Hydrospheresand Space Sciences, 29(6), 1019, doi:10.5194/angeo-29-1019-2011.
  577. Kramar, M., B. Inhester, H. Lin, and J. Davila (2013), Vector Tomography for the Coronal Magnetic Field. II. Hanle Effect Measurements, The Astrophysical Journal, 775(1), 25, doi:10.1088/0004-637x/775/1/25.
  578. Kramar, M., S. Jones, J. Davila, B. Inhester, and M. Mierla (2009), On the Tomographic Reconstruction of the 3D Electron Density for the Solar Corona from STEREO COR1 Data, Solar Physics, 259, 109-121, doi:10.1007/s11207-009-9401-2.
  579. Kramar, M., H. Lin, and S. Tomczyk (2016), DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS, The Astrophysical Journal Letters, 819(2), L36, doi:10.3847/2041-8205/819/2/l36.
  580. Krishna Prasad, S., D. Banerjee, and J. Singh (2013), Oscillations in coronal structures, paper presented at Astronomical Society of India Conference Series.
  581. Kucera, A., et al. (2016), The CoMP-S Instrument at the Lomnický Peak Observatory: Status Report, in Astronomical Society of the Pacific Conference Series, edited by I. Dorotovic, p. 321.
  582. Kucera, A., J. Ambróz, P. Gömöry, M. Kozák, and J. Rybák (2010), CoMP-S-the Coronal Multi-Channel Polarimeter for Slovakia, Contrib. Astron. Obs. Skalnaté Pleso, 40, 135-138.
  583. Kucera, T. A., S. E. Gibson, D. J. Schmit, E. Landi, and D. Tripathi (2012), Temperature and EUV Intensity in a Coronal Prominence Cavity and Streamer, The Astrophysical Journal, 757(1), 13, doi:10.1088/0004-637x/757/1/73.
  584. Kumar, U. L. V., and P. J. Kurian (2012), Solar Wind: Origin, Properties and Impact on Earth, Exploring the Solar Wind, Dr. Marian Lazar (Ed.), ISBN: 978-953-51-0339-4, doi:10.5772/37223.
  585. Kundu, M. R., E. J. Schmahl, Z. Wang, J. Burkepile, A. Hundhausen, and D. Sime (1990), A Collection of Images of the Solar Corona at Meter Wavelengths, in White Light, the 10830 He line and Extrapolated Magnetic Fields, U.of Maryland Data Note.
  586. Kuz'menko, I. V., V. V. Grechnev, and A. M. Uralov (2009), A study of eruptive solar events with negative radio bursts, Astronomy Reports, 53, 1039-1049, doi:10.1134/s1063772909110092.
  587. Lake, R., S. Pinches, R. Akers, and E. Verwichte (2012), Fast Ion Redistribution due to Fishbones in MAST, Bulletin of the American Physical Society, 57.
  588. Lamy, P., O. Floyd, Z. Mikić, and P. Riley (2019), Validation of MHD Model Predictions of the Corona with LASCO-C2 Polarized Brightness Images, Solar Physics, 294(11), 162, doi:10.1007/s11207-019-1549-9.
  589. Lamy, P., A. Llebaria, B. Boclet, H. Gilardy, M. Burtin, and O. Floyd (2020), Coronal Photopolarimetry with the LASCO-C2 Coronagraph over 24 Years [1996–2019], Solar Physics, 295(7), 1-62, doi:10.1007/s11207-020-01650-y.
  590. Landi, E., S. Habbal, and S. Tomczyk (2016), Coronal plasma diagnostics from ground‐based observations, Journal of Geophysical Research: Space Physics, 121(9), 8237-8249, doi:10.1002/2016ja022598.
  591. Landi, E., R. Oran, S. Lepri, T. Zurbuchen, L. Fisk, and B. van der Holst (2014), Charge State Evolution in the Solar Wind. III. Model Comparison with Observations, The Astrophysical Journal, 790(2), 111, doi:10.1088/0004-637x/790/2/111.
  592. Landi, E., and S. Tomczyk (2015), Science Requirements for the COSMO Large Coronagraph, NCAR Technote.
  593. Lantos, P. a. C. E. A. (1996), Coronal Sources at Meter and Optical Wavelengths During the Declining Phase of the Solar Cycle, Solar Physics, 165, 83-98.
  594. Lantos, P. C. E. A. a. D. R. (1992), Quiet-Sun emission and local sources at meter and decimeter wavelengths and their relationship with the coronal neutral sheet, Solar Physics, 137, 225.
  595. Lario, D., A. Aran, and R. B. Decker (2009), Major Solar Energetic Particle Events of Solar Cycles 22 and 23: Intensities Close to the Streaming Limit, Solar Physics, 260(2), 407-421, doi:10.1007/s11207-009-9463-1.
  596. Lario, D. R. G. M., T. R. Sanderson, M. Maksimovic, B. Sanahuja, S. P. Plunkett, A. Balogh, R. J. Forsyth, R. P. Lin, and J. T. Gosling (2000), Energetic proton observations at 1 and 5 AU 2. Rising phase of the solar cycle 23, JOURNAL OF GEOPHYSICAL RESEARCH, 105 NO. A8, 274.
  597. Lazar, M., and S. Poedts (2009), Limits for the Firehose Instability in Space Plasmas, Solar Physics, 258(1), 119-128, doi:10.1007/s11207-009-9405-y.
  598. Lean, J. L., J. Cook, W. Marquette, and A. Johannesson (1998), Magnetic Sources of the Solar Irradiance Cycle, ApJ, 492, 390.
  599. LeBlanc, Y., T. B. H. Kuiper, and S. F. Hansen (1974), Coronal Density Structures in Regions of Type III Activity, Solar Physics, 37, 215-223.
  600. Leblanc, Y., J. L. Leroy, and P. Poulain (1970), The Characteristic Sizes and the Electron Density of Coronal Enhancements Observed in White Light, Astronomy and Astrophysics, 5, 391.
  601. Lee, J., K. Cho, S. Bong, B. Joshi, Y. Moon, and G. Choe (2008a), The Role of Magnetic Reconnection in the 2004 August 18 Solar Eruption, paper presented at AGU Spring Meeting Abstracts, 2008.
  602. Lee, J.-O., K.-S. Cho, K.-S. Lee, I.-H. Cho, J. Lee, Y. Miyashita, Y.-H. Kim, R.-S. Kim, and S. Jang (2020), Formation of Post-CME Blobs Observed by LASCO-C2 and K-Cor on 2017 September 10, ApJ, 892(2), 129, doi:10.3847/1538-4357/ab799a.
  603. Lee, K. S., Y. J. Moon, K. S. Kim, J. Y. Lee, K. S. Cho, and G. S. Choe (2008b), Comparison of SOHO UVCS and MLSO MK4 coronameter densities, Astronomy and Astrophysics, 486, 1009-1013, doi:10.1051/0004-6361:20078976.
  604. Lefebvre, S., and J. P. Rozelot (2004), A new method to detect active features at the solar limb, Solar Phys, 219, 25.
  605. Leibacher, J. (2003), Global and Local Helioseismology with GONG+, Solar and Solar-Like Oscillations: Insights and Challenges for the Sun and Stars, 25th meeting of the IAU, Joint Discussion 12, 18 July 2003, Sydney, Australia, 12, 46.
  606. Lepri, S. T., and T. H. Zurbuchen (2010), Direct Observational Evidence of Filament Material Within Interplanetary Coronal Mass Ejections, The Astrophysical Journal Letters, 723, L22, doi:10.1088/2041-8205/723/1/l22.
  607. Lepri, S. T., T. H. Zurbuchen, J. R. Gruesbeck, and J. A. Gilbert (2013), The in-situ manifestation of solar prominence material, Proceedings of the International Astronomical Union, 8(S300), 289-296, doi:10.1017/s1743921313011113.
  608. Li, G., R. Moore, R. A. Mewaldt, L. Zhao, and A. W. Labrador (2012), A Twin-CME Scenario for Ground Level Enhancement Events, Space Science Reviews, 171(1-4), 141-160, doi:10.1007/s11214-011-9823-7.
  609. Li, J., J. Kuhn, B. LaBonte, J. C. Raymond, and L. W. Acton (2000), Global Solar Corona Revealed by Time Series Observations, The Astrophysical Journal, 538, 415-423.
  610. Li, Y., and P. R. Wilson (1997), The Internal Solar Rotation Rate Inferred from Combined LOWL and GONG Data, Kyoto, Japan, 18-22 August, 1997.
  611. Li, Y., and P. R. Wilson (1998), The Internal Solar Rotation Rate Inferred from Combined GONG and LOWL Data, ApJ, 499, 504.
  612. Liewer, P. C., E. M. De Jong, J. R. Hall, R. A. Howard, W. T. Thompson, J. L. Culhane, L. Bone, and L. van Driel-Gesztelyi (2009), Stereoscopic analysis of the 19 May 2007 erupting filament, Solar Physics, 256(1), 57-72, doi:10.1007/s11207-009-9363-4.
  613. Lin, H., and J. R. Kuhn (1992), Precision IR and visible solar photometry, Solar Phys, 141, 1.
  614. Lin, J. (2007), Observational Features of Large-Scale Structures as Revealed by the Catastrophe Model of Solar Eruptions, Chinese J.Astron.Astrophys, 004(004), 457-476.
  615. Lin, J., Y. K. Ko, L. Sui, J. C. Raymond, G. A. Stenborg, Y. Jiang, S. Zhao, and S. Mancuso (2005a), Direct Observations of the Magnetic Reconnection Site of an Eruption on 2003 November 18, Astrophysical Journal, 622, 1251-1264, doi:10.1086/428110.
  616. Lin, J., Y. K. Ko, L. Sui, J. C. Raymond, G. A. Stenborg, Y. Jiang, S. Zhao, and S. Mancuso (2005b), Magnetic Reconnection Inflow near the CME/Flare Current Sheet, 2005.
  617. Lin, J., J. Li, Y. K. Ko, and J. C. Raymond (2009), Investigation of Thickness and Electrical Resistivity of the Current Sheets in Solar Eruptions, The Astrophysical Journal, 693, 1666-1677, doi:10.1088/0004-637x/693/2/1666.
  618. Lin, J., N. A. Murphy, C. Shen, J. C. Raymond, K. K. Reeves, J. Zhong, N. Wu, and Y. Li (2015), Review on Current Sheets in CME Development: Theories and Observations, Space Science Reviews, 194(1-4), 237-302, doi:10.1007/s11214-015-0209-0.
  619. Lin, J., and L. Ni (2018), Large‐Scale Current Sheets in Flares and CMEs, Electric Currents in Geospace and Beyond, 239-255, doi:10.1002/9781119324522.ch1.
  620. Lin, J. Y. K. K., L. Sui, J. C. Raymond, G. A. Stenborg, Y. Jiang, and S. Z. a. S. Mancuso (2004), Magnetic Reconnection Inflow near the CME/Flare Current Sheet, Proceedings of the International Astronomical Union, 311-313.
  621. Ling, A., D. Webb, J. Burkepile, and E. Cliver (2014), Development of a Current Sheet in the Wake of a Fast Coronal Mass Ejection, The Astrophysical Journal, 784(2), 91, doi:10.1088/0004-637x/784/2/91.
  622. Linker, J. A., Z. Mikic, D. A. Biesecker, R. J. Forsyth, S. E. Gibson, A. J. Lazarus, A. Lecinski, P. Riley, A. Szabo, and B. J. Thompson (1999), Magnetohydrodynamic Modeling of the Solar Corona During Whole Sun Month, Journal of Geophysical Research, 104 A5, 9809.
  623. Liu, J., S. W. McIntosh, I. De Moortel, J. Threlfall, and C. Bethge (2014), Statistical Evidence for the Existence of Alfvénic Turbulence in Solar Coronal Loops, The Astrophysical Journal, 797(7), 10, doi:10.1088/0004-637x/797/1/7.
  624. Liu, J., S. W. McIntosh, I. De Moortel, and Y. Wang (2015), On the parallel and perpendicular propagating motions visible inPolar plumes: an incubator for (fast) solar wind acceleration?, The Astrophysical Journal, 806(2), 273, doi:10.1088/0004-637x/806/2/273.
  625. Liu, R. (2008), Dynamics of solar eruptive filaments, ProQuest.
  626. Liu, R., and D. Alexander (2009), HXR EMISSION IN KINKING FILAMENTS, The Astrophysical Journal, 697, 999-1009, doi:10.1088/0004-637x/697/2/999.
  627. Liu, R., D. Alexander, and H. R. Gilbert (2007), Kink-induced Catastrophe in a Coronal Eruption, The Astrophysical Journal, 661, 1260-1271, doi:10.1086/513269.
  628. Liu, R., D. Alexander, and H. R. Gilbert (2009a), Asymmetric Eruptive Filaments, The Astrophysical Journal, 691, 1079-1091, doi:10.1088/0004-637x/691/2/1079.
  629. Liu, R., H. R. Gilbert, D. Alexander, and Y. Su (2008), The Effect of Magnetic Reconnection and Writhing in a Partial Filament Eruption, The Astrophysical Journal, 680(2), 1508-1515, doi:10.1086/587482.
  630. Liu, R., and H. Wang (2010), Fast Contraction of Coronal Loops at the Flare Peak, The Astrophysical Journal Letters, 714, L41, doi:10.1088/2041-8205/714/1/l41.
  631. Liu, R., H. Wang, and D. Alexander (2009b), IMPLOSION IN CORONAL ERUPTION, The Astrophysical Journal, 696, 121-135, doi:10.1088/0004-637x/696/1/121.
  632. Liu, W., T. E. Berger, and B. C. Low (2012), First SDO/AIA Observation of Solar Prominence Formation Following an Eruption: Magnetic Dips and Sustained Condensation and Drainage, The Astrophysical Journal Letters, 745, L21, doi:10.1088/2041-8205/745/2/l21.
  633. Livingston, W., and N. R. Sheeley (2008), Limits to the Radiative Asymmetry of the Quiet Solar Disk, The Astrophysical Journal, 672, 1228, doi:10.1086/523643.
  634. Lloveras, D., A. Vásquez, E. Landi, and R. Frazin (2019), Tomography of the Solar Corona with Multiple Instruments: First Steps, Boletin de la Asociacion Argentina de Astronomia La Plata Argentina, 61, 35-37.
  635. Long, D. M., G. Valori, D. Pérez-Suárez, R. J. Morton, and A. M. Vásquez (2017), Measuring the magnetic field of a trans-equatorial loop system using coronal seismology, Astronomy and Astrophysics, 603, doi:10.1051/0004-6361/201730413.
  636. Low, B. (2019), Coronal magnetism as a universal phenomenon, in The Sun as a Guide to Stellar Physics, edited, pp. 207-237, Elsevier, doi:10.1016/b978-0-12-814334-6.00008-x.
  637. Low, B. C. (1996), Solar Activity and the Corona, Solar Physics, 167, 217-265.
  638. Low, B. C. (1997), The Role of Coronal Mass Ejections in Solar Activity, in Coronal Mass Ejections, Geophysical Monograph 99, American Geophysical Union, 99, 39-47.
  639. Low, B. C., R. H. Munro, and R. R. Fisher (1982), The Initiation of a Coronal Transient, The Astrophysical Journal, 254, 335-342.
  640. Lugaz, N., and I. Roussev (2010), Numerical modeling of interplanetary coronal mass ejections and comparison with heliospheric images, Journal of Atmospheric and Solar-Terrestrial Physics, doi:10.1016/j.jastp.2010.08.016.
  641. Lugaz, N. E. R. (2007), Numerical investigation of coronal mass ejections interacting in the inner heliosphere, 6 pp.
  642. Lynch, B. J., S. Masson, Y. Li, C. R. DeVore, J. Luhmann, S. K. Antiochos, and G. H. Fisher (2016), A model for stealth coronal mass ejections, Journal of Geophysical Research: Space Physics, 121(11), 10,677-610,697, doi:10.1002/2016ja023432.
  643. Macnamara, C. K., and B. Roberts (2011), The period ratio for kink and sausage modes in a magnetic slab, Astronomy and Astrophysics, 526, 75, doi:10.1051/0004-6361/201015460.
  644. MacQueen, R., M. A. Hendrickson, J. C. Woods, A. R. Lecinski, and D. F. E. a. O. R. White (1998a), Temporal Properties of He I 1083 nm Dark Points, Solar Physics.
  645. MacQueen, R. M. (1980), Coronal Transients: A Summary, Phil.Trans.R.Soc.Lond., 297, 605-620.
  646. MacQueen, R. M. (1985), Coronal Mass Ejections: Acceleration and Surface Associations, Solar Physics, 95, 359-361.
  647. MacQueen, R. M., J. G. Blankner, D. F. Elmore, A. R. Lecinski, and O. R. White (1998b), Initial CHIP He I Observations of Solar Limb Activity, Solar Physics, 182, 97-105, doi:10.1023/a:1005010304281.
  648. MacQueen, R. M., and R. Fisher (1983), The Kinematics of Solar Inner Coronal Transients, Solar Physics, 89, 89-102.
  649. Magidimisha, E. (2010), A Study of the Time-dependent Modulation of Cosmic Rays in the Inner Heliosphere.
  650. Malandraki, O. E., R. G. Marsden, C. Tranquille, R. J. Forsyth, H. A. Elliott, and A. Geranios (2008), Energetic particle measurements from the Ulysses/COSPIN/LET instrument obtained during the August/September 2005 events, Ann.Geophys, 26, 1029-1037, doi:10.5194/angeo-26-1029-2008.
  651. Maloney, S. (2012), Propagation of Coronal Mass Ejections in the Inner Heliosphere, arXiv preprint arXiv:1210.5491.
  652. Mancuso, S. (2007), Coronal transients and metric type II radio bursts. II. Accelerations at low coronal heights, Astronomy and Astrophysics, 463, 1137-1141, doi:10.1051/0004-6361:20054767.
  653. Mancuso, S., and D. Avetta (2008), UV and Radio Observations of the Coronal Shock Associated with the 2002 July 23 Coronal Mass Ejection Event, The Astrophysical Journal, 677(1), 683-691, doi:10.1086/528839.
  654. Mancuso, S., F. Frassati, A. Bemporad, and D. Barghini (2019), Three-dimensional reconstruction of CME-driven shock–streamer interaction from radio and EUV observations: a different take on the diagnostics of coronal magnetic fields, Astronomy & Astrophysics, 624, L2, doi:10.1051/0004-6361/201935157.
  655. Mancuso, S., and M. Garzelli (2013), Coronal magnetic field strength from Type II radio emission: complementarity with Faraday rotation measurements, Astronomy & Astrophysics, 560, 4, doi:10.1051/0004-6361/201322645.
  656. Mancuso, S., J. Raymond, S. Rubinetti, and C. Taricco (2016), O VI 1032 Å intensity and Doppler shift oscillations above a coronal hole: Magnetosonic waves or quasi-periodic upflows?, Astronomy & Astrophysics, 592, L8, doi:10.1051/0004-6361/201628769.
  657. Maricic, D., B. Vrsnak, and D. Rosa (2008), Acceleration of CMEs and Eruptive Prominences, 2008.
  658. Maricic, D., B. Vrsnak, and D. Rosa (2009), Relative Kinematics of the Leading Edge and the Prominence in Coronal Mass Ejections, Solar Physics, 260, 177-189, doi:10.1007/s11207-009-9421-y.
  659. Maricic, D., B. Vrsnak, D. Rosa, and D. Hrzina (2012), Coronal Mass Ejection of 26 February 2000: Complete analysis of the three-part CME structure, Sun and Geosphere, 7, 85-89.
  660. Maricic, D., B. Vrsnak, D. Rosa, and A. Veronig (2005), Coupling of the CME Acceleration and the Flare Energy Release, 2005.
  661. Maricic, D., B. Vrsnak, A. L. Stanger, D. Rosa, and D. Hrzina (2003), Initiation and development of two coronal mass ejections, paper presented at Solar Variability as an Input to the Earth's Environment, 2003.
  662. Maricic, D., B. Vrsnak, A. L. Stanger, A. M. Veronig, M. Temmer, and D. Rosa (2007), Acceleration Phase of Coronal Mass Ejections: II. Synchronization of the Energy Release in the Associated Flare, Solar Physics, 241(1), 99-112, doi:10.1007/s11207-007-0291-x.
  663. Maričić, D., D. Roša, and B. Vršnak (2006), Coronal Mass Ejection of 28 June 2000: Coupling of the CME Evolution and the Flare Energy Release, Sun and Geosphere, 1, 35-38.
  664. Maričić, D., B. Vršnak, A. L. Stanger, and A. Veronig (2004), Coronal Mass Ejection of 15 May 2001: I. Evolution of Morphological Features of the Eruption, Solar Physics, 225, 337-353, doi:10.1007/s11207-004-3748-1.
  665. Martin, S. F., and A. H. McAllister (1997), Predicting the Sign of Magnetic Helicity in Erupting Filaments and Coronal Mass Ejections, in, Coronal Mass Ejections, Geophysical Monograph 99, 127-138.
  666. Martin, S. F., O. Panasenco, Y. Agah, O. Engvold, Y. Lin, B. Lites, M. Cheung, T. Magara, J. Mariska, and K. Reeves (2009), Relating a Prominence Observed from the Solar Optical Telescope on the Hinode Satellite to Known 3-D Structures of Filaments, 2009.
  667. Marubashi, K., S. Akiyama, S. Yashiro, N. Gopalswamy, K.-S. Cho, and Y.-D. Park (2015), Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources, Solar Physics, 290, 1371-1397, doi:10.1007/s11207-015-0681-4.
  668. Mathioudakis, M., D. B. Jess, and R. Erdelyi (2012), Alfvén Waves in the Solar Atmosphere, Space Science Reviews, 175(1-4), 1-27, doi:10.1007/s11214-012-9944-7.
  669. Matthews, S. A., and J. L. Culhane (2007), Magnetic coupling of the Sun-Earth system: The view from STEREO, Advances in Space Research, 39(12), 1791-1803, doi:10.1016/j.asr.2007.02.043.
  670. Maurya, R. A., and A. Ambastha (2009), Transient Magnetic and Doppler Features Related to the White-Light Flares in NOAA 10486, Solar Physics, 258(1), 31-52, doi:10.1007/s11207-009-9397-7.
  671. Maurya, R. A., and A. Ambastha (2010), Magnetic and Velocity Field Changes Related to the Solar Flares of 28 and 29 October 2003, Magnetic Coupling between the Interior and Atmosphere of the Sun, 517-517, doi:10.1007/978-3-642-02859-5_78.
  672. Maxwell, A., M. Dryer, and P. McIntosh (1985), A Piston-Driven Shock in the Solar Corona, Solar Physics, 97, 401-413.
  673. McAllister, A. H., and N. U. Crooker (1997), Coronal Mass Ejections, Corotating Interaction Regions, and Geomagnetic Storms, in, Coronal Mass Ejections, Geophysical Monograph 99, 279-289.
  674. McAllister, A. H., M. Dryer, P. McIntosh, and H. Singer (1996a), A Large Polar Crown Coronal Mass Ejection and a `Problem' Geomagnetic Storm: April 14-23, 1994, Journal of Geophysical Research, 101 (A6), 497-413.
  675. McAllister, A. H., A. J. Hundhausen, J. T. Burkepile, and P. McIntosh (1996b), Declining Phase Coronal Evolution and X-Ray Arcades, in Magnetohydrodynamic Phenomena in the Solar Atmosphere, Prototypes of Stellar Magnetic Activity, eds. Y. Uchida et al., 123.
  676. McAllister, A. H., D. Knipp, N. U. Crooker, T. Mukai, and S. Kokubun (1998), Identification of Solar Drivers: The 3-4 November 1993 Geomagntic Storm, Journal of Geophysical Research, 103, 26221-26233.
  677. McCabe, M. M. (1986), The White Light Corona and Photospheric Magnetic Fields, Coronal and Prominence Plasmas; NASA Conference Publication 2442, 263-267.
  678. McComas, D., N. Angold, H. Elliott, G. Livadiotis, N. Schwadron, R. Skoug, and C. Smith (2013), Weakest Solar Wind of the Space Age and the Current, The Astrophysical Journal, 779(2), 10, doi:10.1088/0004-637x/779/1/2.
  679. McComas, D. J., S. J. Bame, B. L. Barraclough, W. C. Feldman, H. O. Funsten, J. T. Gosling, P. Riley, and R. Skoug (1998), Ulysses, Return to the Slow Solar Wind, Geophysical Research Letters, 25 (1), 1-4.
  680. McGuinness, D., P. Fox, L. Cinquini, P. West, J. Garcia, J. L. Benedict, and D. Middleton (2007), The Virtual Solar-Terrestrial Observatory: A Deployed Semantic Web Application Case Study for Scientific Research, Proceedings of the Nineteenth Conference on Innovative Applications of Artificial Intelligence (IAAI-07).Vancouver, BC, Canada.
  681. McGuinness, D., P. Fox, J. Garcia, and S. Zednik (2008a), Provenance in Observational Solar Physics Data Pipelines, AGU Fall Meeting Abstracts, 44, 02-02.
  682. McGuinness, D. L., P. Fox, L. Cinquini, J. Benedict, P. West, J. Garcia, T. Darnell, and D. Middleton (2006), Semantic Web Cyberinfrastructure for Virtual Observatories, AGU Fall Meeting Abstracts, 43, 02.
  683. McGuinness, D. L., P. Fox, L. Cinquini, P. West, J. Garcia, J. L. Benedict, and D. Middleton (2008b), Enabling Scientific Research using an Interdisciplinary Virtual Observatory: The Virtual Solar-Terrestrial Observatory Example, AI Magazine, 29(1), 65, doi:10.1609/aimag.v29i1.2087.
  684. McGuinness, D. L., P. Fox, P. Pinheiro da Silva, S. Zednik, N. Del Rio, L. Ding, P. West, and C. Chang (2008c), Annotating and embedding provenance in science data repositories to enable next generation science applications, paper presented at AGU Fall Meeting Abstracts, 2008.
  685. McIntosh, S. W. (2012), Recent Observations of Plasma and Alfvénic Wave Energy Injection at the Base of the Fast Solar Wind, Space Science Reviews, 172(1), 69-87, doi:10.1007/s11214-012-9889-x.
  686. McIntosh, S. W., C. Bethge, J. Threlfall, I. De Moortel, R. J. Leamon, and H. Tian (2013), The Evolving Magnetic Scales of the Outer Solar Atmosphere and Their Potential Impact on Heliospheric Turbulence, arXiv preprint arXiv:1311.2538.
  687. McIntosh, S. W., and B. De Pontieu (2012), Estimating the "Dark" Energy Content of the Solar Corona, The Astrophysical Journal, 761(138), 8, doi:10.1088/0004-637x/761/2/138.
  688. McIntosh, S. W., B. de Pontieu, and S. Tomczyk (2007), Observing the Influence of Alfven Waves on the Energetics of the Quiet Solar Corona and Solar Wind, paper presented at AGU Fall Meeting Abstracts, 2007.
  689. McIntosh, S. W., B. De Pontieu, and S. Tomczyk (2008), A coherence-based approach for tracking waves in the solar corona, Solar Physics, 252(2), 321-348, doi:10.1007/s11207-008-9257-x.
  690. McIntosh, S. W., R. J. Leamon, R. A. Hock, M. P. Rast, and R. K. Ulrich (2011), Observing Evolution in the Supergranular Length Scale During Periods of Low Solar Activity, The Astrophysical Journal Letters, 730(1), doi:10.1088/2041-8205/730/1/l3.
  691. McIntosh, S. W., and S. Tomczyk (2010), New Observations Of The Solar Coronal Magnetism And Waves With HAO/CoMP, paper presented at American Astronomical Society Meeting Abstracts, 2010.
  692. McKenzie, D. E. (2000), Supra-arcade Downflows in Long-Duration Solar Flare Events, Solar Physics, Volume 195(Number 2 / August).
  693. McLaughlin, J. A., G. Verth, V. Fedun, and R. Erdélyi (2012), Generation of Quasi-periodic Waves and Flows in the Solar Atmosphere by Oscillatory Reconnection, The Astrophysical Journal, 749, 30, doi:10.1088/0004-637x/749/1/30.
  694. Meftah, M., A. Hauchecorne, R. Bush, and A. Irbah (2016), On HMI Solar Oblateness during Solar Cycle 24 and Impact of the Space Environment on Results, Advances in Space Research, doi:10.1016/j.asr.2016.06.003.
  695. Meftah, M., A. Irbah, A. Hauchecorne, T. Corbard, S. Turck-Chièze, J.-F. Hochedez, P. Boumier, A. Chevalier, S. Dewitte, and S. Mekaoui (2015), On the Determination and Constancy of the Solar Oblateness, Solar Physics, 290(3), 673-687, doi:10.1007/s11207-015-0655-6.
  696. Meisner, R. W., and M. P. Rast (2002), High Precision Orthogonal Decomposition of the Solar Limb Darkening, 2002.
  697. Mendoza, B., and P.-E. Roman (1993), Association of Coronal Mass Ejections with the Heliomagnetic Current Sheet, Journal of Geophysical Research, 98 (A6), 9365-9370.
  698. Merkel, A. W., J. W. Harder, D. R. Marsh, A. K. Smith, J. M. Fontenla, and T. Woods (2011), The impact of solar spectral irradiance variability on middle atmospheric ozone, Geophys.Res.Lett, 38, doi:10.1029/2011gl047561.
  699. Messerotti, M., F. Zuccarello, S. L. Guglielmino, V. Bothmer, J. Lilensten, G. Noci, M. Storini, and H. Lundstedt (2009), Solar Weather Event Modelling and Prediction, Space Science Reviews, 147, 121-185, doi:10.1007/s11214-009-9574-x.
  700. Michaelis, J., S. Zednik, P. West, P. A. Fox, and D. L. McGuinness (2010), Extending eScience Provenance with User-Submitted Semantic Annotations, paper presented at AGU Fall Meeting Abstracts, 2010.
  701. Michaelis, J. R., L. Ding, Z. Shangguan, S. Zednik, R. Huang, P. P. Da Silva, N. Del Rio, and D. L. McGuinness (2009), Towards Usable and Interoperable Workflow Provenance: Empirical Case Studies Using PML, paper presented at Proceedings of the First International Workshop on the role of Semantic Web in Provenance Management, Chantilly, VA, Citeseer, 2009.
  702. Michels, D. J. (2002), The SECCHI Solar Plasma Imager for STEREO, in Space Weather Study using Multipoint Techniques, edited by L. Ling-Hsiao, pp. 49-54, Pergamon Press.
  703. Mierla, M., B. Inhester, A. Antunes, Y. Boursier, J. P. Byrne, R. Colaninno, J. Davila, C. A. de Koning, S. Gallagher, and R. A. Howard (2010), On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data, paper presented at Annales Geophysicae, 2010.
  704. Mikić, Z., C. Downs, J. A. Linker, R. M. Caplan, D. H. Mackay, L. A. Upton, P. Riley, R. Lionello, T. Török, and V. S. Titov (2018), Predicting the corona for the 21 August 2017 total solar eclipse, Nature Astronomy, 1, doi:10.1038/s41550-018-0562-5.
  705. Minarovjech, M., R. Vojtech, R. Milan, S. Takashi, and I. Kiyoshi (2003), Oscillations in the coronal green-line intensity observed at Lominicky Stit and Norikura nearly simultaneously, Solar Phys., 213, 269-290.
  706. Mittal, N., and U. Narain (2010), Initiation of CMEs: A review, Journal of Atmospheric and Solar-Terrestrial Physics, 72, 643-652, doi:10.1016/j.jastp.2010.03.011.
  707. Mittal, N., J. Sharma, V. Tomar, and U. Narain (2009), On distribution of CMEs speed in solar cycle 23, Planetary and Space Science, 57(1), 53-57, doi:10.1016/j.pss.2008.10.013.
  708. Mocanu, G., A. Marcu, I. Ballai, and B. Orza (2008), The problem of phase mixed shear Alfvén waves in the solar corona revisited, Astronomische Nachrichten, 329(8), 780-785, doi:10.1002/asna.200811031.
  709. Mohamed, A. A., N. Gopalswamy, S. Yashiro, S. Akiyama, P. Mäkelä, H. Xie, and H. Jung (2012), The relation between coronal holes and coronal mass ejections during the rise, maximum, and declining phases of Solar Cycle 23, J.Geophys.Res, 117, A01103, doi:10.1029/2011ja016589.
  710. Moise, E., J. Raymond, and J. R. Kuhn (2010), Properties of the Diffuse Neutral Helium in the Inner Heliosphere, The Astrophysical Journal, 722, 1411, doi:10.1088/0004-637x/722/2/1411.
  711. Monteiro, M. J. P. F. G., J. Christensen-Dalsgaard, and M. J. Thompson (1998), The Base of the Convection Zone and the Solar Magnetic Cycle: Seismic Detection of Their Connection, ESA-SP-418, Vol. 1, Noordwijk: ESA Publications Division, 1998.
  712. Montes-Solís, M., and I. Arregui (2020), Quantifying the evidence for resonant damping of coronal waves with foot-point wave power asymmetry, Astronomy & Astrophysics, 640, L17, doi:10.1051/0004-6361/201937237.
  713. Moore, R. L. a. A. C. S. (2007), The Coronal-dimming Footprint of a Streamer-Puff Coronal Mass Ejection: Confirmation of the Magnetic-Arch-Blowout Scenario, The Astrophysical Journal, 661, 543-550, doi:10.1086/516620.
  714. Morgan, H. (2010), Isolating CME Signals In Coronagraph Images, paper presented at American Astronomical Society Meeting Abstracts, 2010.
  715. Morgan, H. (2011), The Rotation of the White Light Solar Corona at Height 4 R sun from 1996 to 2010: A Tomographical Study of Large Angle and Spectrometric Coronagraph C2 Observations, The Astrophysical Journal, 738, 189, doi:10.1088/0004-637x/738/2/189.
  716. Morgan, H., and S. R. Habbal (2007a), An empirical 3D model of the large-scale coronal structure based on the distribution of Ha filaments on the solar disk, A&A, 464 1, 357-365, doi:10.1051/0004-6361:20066482.
  717. Morgan, H., and S. R. Habbal (2007b), The long-term stability of the visible F corona at heights of 3-6 Rsun, A&A, 471, L47-L50, doi:10.1051/0004-6361:20078071.
  718. Morgan, H., and S. R. Habbal (2010), Observational Aspects of the Three-dimensional Coronal Structure Over a Solar Activity Cycle, The Astrophysical Journal, 710, 1-15, doi:10.1088/0004-637x/710/1/1.
  719. Morgan, H., L. Jeska, and D. Leonard (2013), The Expansion of Active Regions into the Extended Solar Corona, The Astrophysical Journal Supplement Series, 206(2), 19, doi:10.1088/0067-0049/206/2/19.
  720. Morgan, H., H. Shadia Rifai, and W. Richard (2006), The Depiction of Coronal Structure in White-Light Images, Solar Phys., 236, 263-272, doi:10.1007/s11207-006-0113-6.
  721. Morgan, H. a. H., and R. S (2007), Are solar maximum fan streamers a consequence of twisting sheet structures?, Astronomy and Astrophysics, 465, L47-L50, doi:10.1051/0004-6361:20077126.
  722. Morrill, J. S., R. A. Howard, A. Vourlidas, D. F. Webb, and V. Kunkel (2009), The Impact of Geometry on Observations of CME Brightness and Propagation, Solar Physics, 259, 179-197, doi:10.1007/s11207-009-9403-0.
  723. Morton, R., E. Scullion, D. Bloomfield, J. McLaughlin, S. Regnier, S. McIntosh, S. Tomczyk, and P. Young (2016a), Exploring Coronal Dynamics: A Next Generation Solar Physics Mission white paper, arXiv preprint arXiv:1611.06149.
  724. Morton, R., S. Tomczyk, and R. Pinto (2015), Investigating Alfvenic wave propagation in coronal open-field regions, Nature communications, 6, doi:10.1038/ncomms8813.
  725. Morton, R., S. Tomczyk, and R. Pinto (2016b), A global view of velocity fluctuations in the corona below 1.3 Rsun with CoMP, arXiv preprint arXiv:1608.01831.
  726. Morton, R., G. Verth, A. Hillier, and R. Erdélyi (2013), The generation and damping of propagating MHD kink waves in the solar atmosphere, ApJ, 784(1), 10, doi:10.1088/0004-637x/784/1/29.
  727. Morton, R., M. Weberg, and J. McLaughlin (2019), A basal contribution from p-modes to the Alfvénic wave flux in the Sun’s corona, Nature Astronomy, 3(3), 223-229, doi:10.1038/s41550-018-0668-9.
  728. Moses, J. D., E. Antonucci, J. Newmark, F. Auchère, S. Fineschi, M. Romoli, D. Telloni, G. Massone, L. Zangrilli, and M. Focardi (2020), Global helium abundance measurements in the solar corona, Nature Astronomy, doi:10.1038/s41550-020-1156-6.
  729. Murphy, A. N., J. C. Raymond, and K. E. Korreck (2010), The Energy Budget and Plasma Heating Rates of a Coronal Mass Ejection, paper presented at American Astronomical Society Meeting Abstracts, 2010.
  730. Murphy, N. A., J. C. Raymond, and K. E. Korreck (2011), Plasma Heating During a Coronal Mass Ejection Observed By the Solar and Heliospheric Observatory, The Astrophysical Journal, 735, 17, doi:10.1088/2041-8205/727/2/l52.
  731. Muñoz, G., B. Vargas, and J. L. López-López (2010), Statistical analysis of dynamical parameters of solar ejections observed from 1996 to 2006, Revista Mexicana de Ciencias Geológicas, 27(2), 358-365.
  732. Möstl, C., C. Miklenic, C. J. Farrugia, M. Temmer, A. Veronig, A. B. Galvin, B. Vršnak, and H. K. Biernat (2008), Two-spacecraft reconstruction of a magnetic cloud and comparison to its solar source, Ann.Geophys, 26, 3139-3152, doi:10.5194/angeo-26-3139-2008.
  733. Nakariakov, V. M. (2006), Magnetohydrodynamic waves in coronal polar plumes, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1839), 473, doi:10.1098/rsta.2005.1711.
  734. Nandy, D., P. Bhowmik, A. R. Yeates, S. Panda, R. Tarafder, and S. Dash (2018), The Large-scale Coronal Structure of the 2017 August 21 Great American Eclipse: An Assessment of Solar Surface Flux Transport Model Enabled Predictions and Observations, The Astrophysical Journal, 853(1), 72, doi:10.3847/1538-4357/aaa1eb.
  735. Narayanan, A. S. (2012), An Introduction to Waves and Oscillations in the Sun, Springer Verlag, doi:10.1007/978-1-4614-4400-8.
  736. Narayanan, A. S., C. Kathiravan, and R. Ramesh (2008), Alfvén waves in a gravitational field with flows, Proceedings of the International Astronomical Union, 4(S257), 563-568, doi:10.1017/s174392130902986x.
  737. Nelson, P. G. (2006), An Analysis of Scattered Light in Reflecting and Refracting Primary Objectives for Coronagraphs, COSMO Technical Note, 4.
  738. Neuforge-Verheecke, C., S. Goriely, J. A. Guzik, F. J. Swenson, and P. A. Bradley (2001a), Seismological Tests of Solar Models Calculated with the NACRE Reaction Rates and the Grevesse and Sauval 1998 Mixture, ApJ, 550, 493-502.
  739. Neuforge-Verheecke, C., J. A. Guzik, J. J. Keady, N. H. Magee, P. A. Bradley, and A. Noels (2001b), Helioseismic Tests of the New Los Alamos LEDCOP Opacities, ApJ, 561, 450-454.
  740. Newkirk, G., Jr., R. T. Hansen, and S. F. Hansen (1966), Coronal Electron Densities During the Period of the July 1966 Proton Flare, IQSY, 3, Paper 8, 49-62.
  741. Newkirk, G., Jr., A. J. Hundhausen, and V. Pizzo (1981), Solar Cycle Modulation of Galactic Cosmic Rays: Speculation on the Role of Coronal Transients, Journal of Geophysical Research; 86 (A7), 5387-5396.
  742. Newkirk, G. J. a. L. A. F. (1985), Variation of Cosmic Rays and Solar Wind Properties with Respect to the Heliospheric Current Sheet 1. Five GeV Protons and Solar Wind Speed, Journal of Geophysical Research; 90 (A4), 3391-3414.
  743. Nghiem, P. A. P., R. A. Garcia, and S. J. Jiménez-Reyes (2006), Solar mean magnetic field near the surface and its variation during a cycle, 2006.
  744. Nghiem, P. A. P., R. A. Garcia, S. Turck-Chize, and S. J. Jiménez-Reyes (2003), Magnetic field strength implied in the eigenfrequency variation related to the solar cycle, ESA SP-517, Noordwijk, Netherlands: ESA Publications Division, 2003.
  745. Nicula, B., C. Marqu‚, and D. Berghmans (2008), Visualization of Distributed Solar Data and Metadata with the Solar Weather Browser, Solar Physics, 248(2), 225-232, doi:10.1007/s11207-007-9105-4.
  746. Nikulin, I. F. (2017), CME Structure and Particle Acceleration, arXiv preprint arXiv:1706.02367.
  747. Niot, J. M., and J. C. Noens (1997), H-Alpha survey of the solar corona at Pic-du-Midi, Solar Physics, 173(1), 53-66.
  748. Nisticò, G., V. Bothmer, S. Patsourakos, and G. Zimbardo (2009), Characteristics of EUV Coronal Jets Observed with STEREO/SECCHI, Solar Physics, 259, 87-108, doi:10.1007/s11207-009-9424-8; eprintid: arXiv:0906.4407.
  749. Norton, A. A. a. G., and P.A (2004), Magnetic Field-Minimum Intensity Correlation in Sunspots: A Tool for Solar Dynamo Diagnostics, ApJ, 603, 348.
  750. O'Neill, I. J. (2006), Quiescent Coronal Loops Heated By Turbulence.
  751. Oakley, P., S. Tomczyk, S. Sewell, D. Gallagher, and B. Larson (2016), Systems engineering overview and concept of operations of the COronal Solar Magnetism Observatory (COSMO), paper presented at SPIE Astronomical Telescopes+ Instrumentation, International Society for Optics and Photonics.
  752. Ofman, L. (2010), Wave Modeling of the Solar Wind, Living Reviews in Solar Physics, 7, 4, doi:10.12942/lrsp-2010-4.
  753. Orrall, F. Q., G. J. Rottman, R. R. Fisher, and R. H. Munro (1990), The Solar Coronal Density Irregularity n2 / (n)2 Derived from Simultaneous Measurements of the EUV and K-Coronal Brightness, The Astrophysical Journal, 349, 656-666.
  754. Owocki, S. (2009), Stellar Magnetospheres, EAS Publications Series, 39, 223-254, doi:10.1051/eas/0939012.
  755. Owocki, S. P., G. A. Newkirk, and D. G. Sime (1982), Radar Studies of the Non-Spherically Symmetric Solar Corona, Solar Physics, 78, 317-331.
  756. Pagano, P., I. De Moortel, and R. Morton (2020), Effect of coronal loop structure on wave heating through phase mixing, Astronomy & Astrophysics, 643, A73, doi:10.1051/0004-6361/202039209.
  757. Panasenco, O., S. F. Martin, M. Velli, and A. Vourlidas (2012), Origins of Rolling, Twisting and Non-Radial Propagation of Eruptive Solar Events, Solar Physics, 287(1-2), 391-413, doi:10.1007/s11207-012-0194-3.
  758. Pandey, V. S., T. Magara, and D.-H. Lee (2012), Standing Kink Waves with Longitudinal Flow in Fine Threaded Coronal Loops: A New Method for the Coronal Seismology through Beat and Damped Waves, Publications of the Astronomical Society of Japan, 64, 46, doi:10.1093/pasj/64.3.46.
  759. Pant, V., N. Magyar, T. Van Doorsselaere, and R. Morton (2019), Investigating “Dark” Energy in the Solar Corona Using Forward Modeling of MHD Waves, The Astrophysical Journal, 881(2), 95, doi:10.3847/1538-4357/ab2da3.
  760. Papaioannou, A., I. Sandberg, A. Anastasiadis, A. Kouloumvakos, M. K. Georgoulis, K. Tziotziou, G. Tsiropoula, P. Jiggens, and A. Hilgers (2016), Solar flares, coronal mass ejections and solar energetic particle event characteristics, J. Space Weather Space Clim., 6, A42, doi:10.1051/swsc/2016035.
  761. Parker, G. D., R. L. Chasson, R. T. Hansen, and S. F. Hansen (1976), Solar-cycle Dependence of Galactic Cosmic Ray Flux, Solar Physics, 48, 399-410.
  762. Parker, G. D., R. T. Hansen, and S. F. Hansen (1982), Coronal Rotation During Solar Cycle 20, Solar Physics, 80, 185-198.
  763. Parnell, C. E., and I. De Moortel (2012), A contemporary view of coronal heating, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1970), 3217-3240, doi:10.1098/rsta.2012.0113.
  764. Pasachoff, J. M. (2010), Resource Letter SPh-1: Solar Physics, American Journal of Physics, 78, 890, doi:10.1119/1.3429977.
  765. Pasachoff, J. M., V. Rušin, M. Saniga, H. Druckmüllerová, and B. A. Babcock (2011), Structure and Dynamics of the 2009 July 22 Eclipse White-light Corona, The Astrophysical Journal, 742, 29, doi:10.1088/0004-637x/742/1/29.
  766. Pascoe, D., A. Wright, I. De Moortel, and A. Hood (2015), Excitation and damping of broadband kink waves in the solar corona, doi:10.1051/0004-6361/201321328.
  767. Pascoe, D. J., A. W. Hood, I. de Moortel, and A. N. Wright (2012), Spatial damping of propagating kink waves due to mode coupling, Astronomy and Astrophysics, 539, 37, doi:10.1051/0004-6361/201117979.
  768. Pascoe, D. J., A. W. Hood, I. De Moortel, and A. N. Wright (2013), Damping of kink waves by mode coupling. II. Parametric study and seismology, Astronomy and Astrophysics, 551, 40, doi:10.1051/0004-6361/201220620.
  769. Patel, R., K. Amareswari, V. Pant, D. Banerjee, K. Sankarasubramanian, and A. Kumar (2018), Onboard Automated CME Detection Algorithm for the Visible Emission Line Coronagraph on ADITYA-L1, Solar Physics, 293, doi:10.1007/s11207-018-1323-4.
  770. Patel, R., V. Pant, K. Chandrashekhar, and D. Banerjee (2020), A statistical study of plasmoids associated with a post-CME current sheet, Astronomy & Astrophysics, 644, A158.
  771. Patsourakos, S., A. Vourlidas, and B. Kliem (2010), Toward understanding the early stages of an impulsively accelerated coronal mass ejection. SECCHI observations, Astronomy and Astrophysics, 522, 100, doi:10.1051/0004-6361/200913599.
  772. Peck, C., and M. Rast (2015), Photometric trends in the visible solar continuum and their sensitivity to the center-to-limb profile, The Astrophysical Journal, 808(2), 192, doi:10.1088/0004-637x/808/2/192.
  773. Peck, C. L. (2018), The Influence of Quiet Sun Magnetism on Solar Radiative Output, University of Colorado, Boulder.
  774. Penn, M. J., H. Lin, S. Tomczyk, D. Elmore, and P. Judge (2004), Background-Induced Measurement Errors of the Coronal Intensity, Density, Velocity, and Magnetic Field, Solar Physics, 222(1), 61-78.
  775. Penza, V., B. Caccin, and D. Del Morro (2004a), The sensitivity of the C I 538.0 nm Fe I 537.9 nm and Ti II 538.1 nm lines to solar active regions, A&A, 427, 345.
  776. Penza, V., B. Caccin, I. Ermolli, and M. Centrone (2004b), Comparison of model calculations and photometric observations of bright magnetic regions, A&A, 413, 1115.
  777. Perrone, L., M. Parisi, A. Meloni, M. Damasso, and M. Galliani (2009), Study on solar sources and polar cap absorption events recorded in Antarctica, Advances in Space Research, 43(11), 1660-1668, doi:10.1016/j.asr.2008.03.034.
  778. Perry, R. M. a. M. D. A. (1973), Improved Three-Dimensional Mapping of the Electron Density Distribution of the Solar Corona, Solar Physics, 28, 435-456.
  779. Pesnell, W. D., and P. E. Wiliams (2009), Comparisons of Photospheric Convection Cell Characteristics, AGU Fall Meeting Abstracts, 11, 1500.
  780. Peterson, W. K., T. N. Woods, J. M. Fontenla, P. G. Richards, P. C. Chamberlin, S. C. Solomon, W. K. Tobiska, and H. P. Warren (2012), Solar EUV and XUV energy input to thermosphere on solar rotation time scales derived from photoelectron observations, Journal of Geophysical Research, 117(A5), A05320, doi:10.1029/2011ja017382.
  781. Pick, M., P. Démoulin, S. Krucker, O. Malandraki, and D. Maia (2005), Radio and X-ray signatures of magnetic reconnection behind an ejected flux rope, The Astrophysical Journal, 625, 1019, doi:10.1086/429530.
  782. Pick, M., T. G. Forbes, G. Mann, H. V. Cane, J. Chen, A. Ciaravella, H. Cremades, R. A. Howard, H. S. Hudson, and A. Klassen (2006), Multi-Wavelength Observations of CMEs and Associated Phenomena, Space Science Reviews, 123(1), 341-382, doi:10.1007/s11214-006-9021-1.
  783. Plowman, J. (2014), Single-point inversion of the coronal magnetic field, The Astrophysical Journal, 792(1), 23, doi:10.1088/0004-637x/792/1/23.
  784. Plunkett, S. P., D. J. Michels, R. A. Howard, G. E. Brueckner, O. C. St. Cyr, B. J. Thompson, G. M. Simnett, R. Schwenn, and P. Lamy (2002), New insights on the onsets of coronal mass ejections from soho, Advances in Space Research, 29(10), 1473-1488.
  785. Plunkett, S. P., B. J. Thompson, O. C. St. Cyr, and R. A. Howard (2001), Solar source regions of coronal mass ejections and their geomagnetic effects, Journal of Atmospheric and Solar-Terrestrial Physics, 63(5), 389-402.
  786. Pneuman, G. W., S. F. Hansen, and R. T. Hansen (1978), On the Reality of Potential Magnetic Fields in the Solar Corona, Solar Physics, 59, 313-330.
  787. Poletto, G. (2011), Current Sheets in the Solar Atmosphere, The Sun, the Solar Wind, and the Heliosphere, 157-166, doi:10.1007/978-90-481-9787-3_15.
  788. Poletto, G., S. T. Suess, D. A. Biesecker, R. Esser, G. Gloeckler, Y. K. Ko, and T. H. Zurbuchen (2002), Low-latitude solar wind during the Fall 1998 SOHO-Ulysses quadrature, J.Geophys.Res., 107, A10.
  789. Prasad, S. K., D. Banerjee, and J. Singh (2012), Oscillations in active region fan loops: Observations from EIS/{\ it Hinode} and AIA/SDO, Solar Physics, 281(1), 67-85, doi:10.1007/s11207-012-0098-2.
  790. Preminger, D. G., S. R. Walton, and G. A. Chapman (2001), Solar Feature Identification using Contrasts and Contiguity, Solar Physics, 202(1), 53-62.
  791. Pueschel, R. F., C. J. Garcia, and R. T. Hansen (1974), Solar Radiation: Effects of Atmospheric Water Vapor and Volcanic Aerosols, J.Appl.Meteor., 13 (3), 397-401.
  792. Pätzold, M., B. T. Tsurutani, and M. K. Bird (1997), An Estimate of Large-Scale Solar Wind Density and Velocity Profiles in a Coronal Hole and the Coronal Streamer Belt, Journal of Geophysical Research, 102 (A11), 151-124.
  793. Pätzold, M. a. M. K. B. (1998), Polar Plumes and Fine-Scale Coronal Structures --- On the Interpretation of Coronal Radio Sounding Data, Geophysical Research Letters, 25, 1845-1848.
  794. Pérez-Suárez, D., S. A. Maloney, P. A. Higgins, D. S. Bloomfield, P. T. Gallagher, G. Pierantoni, X. Bonnin, B. Cecconi, V. Alberti, and K. Bocchialini (2012), Studying Sun–Planet Connections Using the Heliophysics Integrated Observatory (HELIO), Solar Physics, 1-19, doi:10.1007/s11207-012-0110-x.
  795. Qiang, Z., X. Bai, K. Ji, H. Liu, and Z. Shang (2020), Enhancing Coronal Structures with Radial Local Multi-scale Filter, New Astronomy, 101383, doi:10.1016/j.newast.2020.101383.
  796. Rabello Soares, M. C., T. Roca Cortes, A. Jimenez, T. Appourchaux, and A. Eff-Darwich (1997), Contribution of Low-l P Modes to the Solar Equatorial Rotation Profile, ApJ, 480, 840.
  797. Rabello-Soares, M. C., J. Christensen-Dalsgaard, and M. J. Thompson (1998), Seismic Constraints on Sound Speed in the Solar Core, ESA-SP-418, Vol. 1, Noordwijk: ESA Publications Division, 1998.
  798. Rachmeler, L., R. Casini, and S. Gibson (2012), Interpreting coronal polarization observations, paper presented at Astronomical Society of the Pacific Conference Series.
  799. Rachmeler, L., C. Guennou, D. Seaton, S. Gibson, and F. Auchère (2016a), Coronal polarization of pseudostreamers and the solar polar field reversal, NASA Technical Reports Server (NTRS).
  800. Rachmeler, L., C. Guennou, D. B. Seaton, S. Gibson, and F. Auchère (2016b), Tracking a large pseudostreamer to pinpoint the southern polar magnetic field reversal, in AAS/Solar Physics Division Meeting, edited.
  801. Rachmeler, L. A., S. E. Gibson, J. B. Dove, C. R. DeVore, and Y. Fan (2013), Polarimetric Properties of Flux-Ropes and Sheared Arcades in Coronal Prominence Cavities, Solar Physics, 288(2), 617-636, doi:10.1007/s11207-013-0325-5.
  802. Rachmeler, L. A., S. J. Platten, C. Bethge, D. B. Seaton, and A. R. Yeates (2014), Observations of a Hybrid Double-Streamer/Pseudostreamer in the Solar Corona, The Astrophysical Journal Letters, 787(1), 6, doi:10.1088/2041-8205/787/1/l3.
  803. Ramesh, R., K. R. Subramanian, and V. S. Ch (1999), Eclipse Observations of Compact Sources in the Outer Solar Corona, Solar Physics, 185 Number 1 / March.
  804. Raouafi, N. E. (2009), Observational Evidence for Coronal Twisted Flux Rope, Astrophysical Journal Letters, 691, L128-L132, doi:10.1088/0004-637x/691/2/l128.
  805. Rast, M., I. Ermolli, J. Sands, and F. Berrilli (2002), The supergranular intensity contrast, 2002.
  806. Rast, M., and J. Harder (2012), Understanding the Role of Small-Scale Flux in Solar Spectral Irradiance Variation, paper presented at Astronomical Society of the Pacific Conference Series.
  807. Rast, M., and R. Meisner (2002), Measuring cycle variations in the solar limb darkening, 2002.
  808. Rast, M. P. (1999), Bright rings around sunspots, Nature, 401, 678.
  809. Rast, M. P., S. R. Cranmer, J. T. Hoeksema, and J. L. Kohl (2010), Is There Such a Thing as Quiet Sun?, 2010.
  810. Rast, M. P., R. W. Meisner, B. W. Lites, P. A. Fox, and O. R. White (2001), Sunspot Bright Rings: Evidence from Case Studies, ApJ, 557, 864.
  811. Rast, M. P., A. Ortiz, and R. W. Meisner (2008), Latitudinal Variation of the Solar Photospheric Intensity, Astrophysical Journal, 673, 1209-1217, doi:10.1086/524655; eprintid: arXiv:0710.3121.
  812. Raymond, J. C., and A. Ciaravella (2010), Current sheet of 4 November 2003 flares.
  813. Reeves, K. K., S. E. Gibson, T. A. Kucera, H. S. Hudson, and R. Kano (2012), Thermal Properties of a Solar Coronal Cavity Observed with the X-Ray Telescope on Hinode, The Astrophysical Journal, 746, 146, doi:10.1088/0004-637x/746/2/146.
  814. Reginald, N. L., O. C. S. Cyr, J. M. Davila, and J. W. Brosius (2003), Electron Temperature and Speed Measurements in the Low Solar Corona: Results From the 2001 June Eclipse, The Astrophysical Journal, 599(1), 596-603.
  815. Reiner, M. J., B. V. Jackson, D. F. Webb, D. R. Mizuno, M. L. Kaiser, and J. L. Bougeret (2005), Coronal mass ejection kinematics deduced from white light (Solar Mass Ejection Imager) and radio (Wind/WAVES) observations, J.Geophys.Res., 110, A09S14, doi:10.1029/2004ja010943.
  816. Reiner, M. J., A. Vourlidas, O. C. S. Cyr, J. T. Burkepile, R. A. Howard, M. L. Kaiser, N. P. Prestage, and J. L. Bougeret (2003), Constraints on Coronal Mass Ejection Dynamics from Simultaneous Radio and White-Light Observations, Astrophysical Journal, 590, 533-546, doi:10.1086/374917.
  817. Reis, N. T. O., N. M. D. Garcia, and P. S. Baldessar (2012), Métodos de projeção para observação segura de eclipses solares, Caderno Brasileiro de Ensino de Física, 29(1), 81-113, doi:10.5007/2175-7941.2012v29n1p81.
  818. Rhodes, E. J., Jr. (1996), Helioseismology: A Probe of the Solar Interior, Atmosphere, and Activity Cycle, in Solar Wind Eight, 3.
  819. Richardson, I. G. (2018), Solar wind stream interaction regions throughout the heliosphere, Living Reviews in Solar Physics, 15(1), 1, doi:10.1007/s41116-017-0011-z.
  820. Rickett, B. J., and W. A. Coles (1991), Evolution of the Solar Wind Structure Over a Solar Cycle: Interplanetary Scintillation Velocity Measurements Compared with Coronal Observations, Journal of Geophysical Research, 96 (A2), 1717-1736.
  821. Riddle, A. C., E. Tandberg-Hanssen, and R. T. Hansen (1974), The Coronal Disturbance of 1972, August 12, Solar Physics, 35, 171-179.
  822. Riley, P., J. T. Gosling, D. J. McComas, V. J. Pizzo, J. G. Luhmann, D. Biesecker, R. J. Forsyth, J. T. Hoeksema, A. Lecinski, and B. J. Thompson (1999), Relationship Between Ulysses Plasma Observations and Solar Observations during the Whole Sun Month Campaign, to be published in the, Journal of Geophysical Research.
  823. Rock, K., R. Fisher, C. Garcia, P. Seagraves, and E. Yasukawa (1983a), The white light solar corona: an atlas of K-coronameter synoptic charts, December 1981 - January 1983Rep.
  824. Rock, K., R. Fisher, C. Garcia, P. Seagraves, and E. Yasukawa (1984a), The White Light Solar Corona: An Atlas of 1983 K-coronameter Synoptic Charts, Dec. 1982 - Jan. 1984, NCAR Technical Note, TN-229+STR, 70 pp.
  825. Rock, K., R. Fisher, C. Garcia, P. H. Seagraves, and E. Yasukawa (1984b), White light solar corona: an atlas of 1983 K-coronameter synoptic chartsRep.
  826. Rock, K., R. Fisher, C. Garcia, and E. Yasukawa (1983b), A Summary of Solar Activity Observed at the Mauna Loa Solar Observatory: 1980-1983, NCAR Technical Note, TN-221+STR, 22 pp.
  827. Rock, K., R. Fisher, C. Garcia, and E. Yasukawa (1983c), Summary of solar activity observed in the Mauna Loa Solar Observatory, 1980 - 1983, NASA STI/Recon Technical Report N, 84, 21484.
  828. Rock, K., and P. Seagraves (1982), A user's guide to Mauna Loa Solar Observatory's coronal data system, NASA STI/Recon Technical Report N, 83(provided.), 26779.
  829. Rodriguez, B. (2008), Magnetic Activity at the Poles of the Sun.
  830. Rosas, G. (2008), CMES Speed as a Multifractal phenomenon, paper presented at 37th COSPAR Scientific Assembly, 2008.
  831. Rosenthal, C. (2008), Evidence for a Shallow Superadiabatic Layer, Nice: Obs. de la Cote d'Azur, 1998.
  832. Rottman, G., J. Harder, J. Fontenla, T. Woods, O. R. White, and G. M. Lawrence (2005), The spectral irradiance monitor (SIM): Early observations, Solar Physics, 230(1), 205-224, doi:10.1007/s11207-005-1530-7.
  833. Roxburgh, I. W. (1997), Helioseismic Constraints on Solar Structure and Solar Neutrinos, Dordrecht: Kluwer, 1997.
  834. Rudawy, P., K. J. H. Phillips, A. Buczylko, D. R. Williams, and F. P. Keenan (2010), Search for Rapid Changes in the Visible-Light Corona during the 21 June 2001 Total Solar Eclipse, Solar Physics, 267(2), 305-327, doi:10.1007/s11207-010-9647-8.
  835. Rust, D. M., B. J. Anderson, M. D. Andrews, M. H. Acu�a, C. T. Russell, P. W. Schuck, and T. Mulligan (2005), Comparison of Interplanetary Disturbances at the NEAR Spacecraft with Coronal Mass Ejections at the Sun, The Astrophysical Journal, 621, 524-536, doi:10.1086/427401.
  836. Rust, D. M., and B. J. LaBonte (2005), Observational Evidence of the Kink Instability in Solar Filament Eruptions and Sigmoids, Astrophys.J.L., 622, L69-L72, doi:10.1086/429379.
  837. Ryabov, B., D. Gary, N. Peterova, K. Shibasaki, and N. Topchilo (2015), Reduced Coronal Emission Above Large Isolated Sunspots, Solar Physics, 290(1), 21-35, doi:10.1007/s11207-014-0634-3.
  838. Rybák, J., J. Ambróz, P. Gömöry, M. Kozák, A. Kučera, S. Tomczyk, S. Sewell, R. Summers, L. Sutherland, and A. Watt (2010), Coronal multichannel polarimeter for Lomnický štít Observatory. (Slovak Title: Koronálny multikanálový polarimeter pre observatórium Lomnický štít), in 20th National Solar Physics Meeting, edited by I. Dorotovic, pp. 196-200.
  839. Sako, T., et al. (2006), Long-lived Solar Neutron Emission in Comparison with Electron-produced Radiation in the 2005 September 7 Solar Flare, The Astrophysical Journal Letters, 651(1), L69-L72; L69-L72, doi:10.1086/509145.
  840. Salabert, D., et al. (2002a), IRIS++ database: Merging of IRIS + Mark-1 + LOWL, A&A, 390, 717-723.
  841. Salabert, D., and S. J. Jiménez-Reyes (2006), Damping and Excitation Variations of the Solar Acoustic Modes Using LOWL Observations, The Astrophysical Journal, 650, doi:10.1086/507177.
  842. Salabert, D., and S. J. Jiménez-Reyes (2006), Solar-cycle variations in p-mode frequencies and even-order splitting coefficients from LOWL observations, 2006.
  843. Salabert, D., et al. (2002b), Analysis of variability of p-mode parameters in 11 years of IRIS data, ESA SP-477, Noordwijk, 2002.
  844. Salabert, D., S. J. Jiménez-Reyes, and S. Tomczyk (2003a), A first study of the excitation and damping rate variations extracted from IRIS++ observations, paper presented at Proceedings of SOHO 12/GONG+ 2002, ESA SP-517, 2003.
  845. Salabert, D., S. J. Jiménez-Reyes, and S. Tomczyk (2003b), Study of p-mode excitation and damping rate variations from IRIS++ observations, A&A, 408, 729-736.
  846. Sawyer, C. a. S. F. H. (1972), Equatorial coronal arches and geomagnetic disturbance, Solar Physics, 26, 370-377.
  847. Schad, T. A., D. Seeley, S. L. Keil, and S. Tomczyk (2007), Coronal Seismology: The Search for Propagating Waves in Coronal Loops, paper presented at American Astronomical Society Meeting 210, #91.13 - Bulletin of the American Astronomical Society, 2007.
  848. Schanche, N. E., K. K. Reeves, and D. F. Webb (2016), THE BLOB CONNECTION: SEARCHING FOR LOW CORONAL SIGNATURES OF SOLAR POST-CME BLOBS, The Astrophysical Journal, 831(1), 47, doi:10.3847/0004-637x/831/1/47.
  849. Schilt, R., M. Rast, S. Criscuoli, J. Fontenla, and N. Goldbaum (2007), Solar Irradiance, Image Restoration and Structure Identification.
  850. Schmit, D. (2012), Diagnosing the Prominence-Cavity Connection in the Solar Corona, paper presented at American Astronomical Society, AAS Meeting #220.
  851. Schmit, D. J., and S. E. Gibson (2011), Forward Modeling Cavity Density: A Multi-instrument Diagnostic, The Astrophysical Journal, 733, 1, doi:10.1088/0004-637x/733/1/1.
  852. Schmit, D. J., S. E. Gibson, and T. A. Kucera (2010), Density Diagnostics in Cavities: Incorporating and Bypassing Projection Effects, paper presented at AGU Fall Meeting Abstracts, 2010.
  853. Schmit, D. J., S. E. Gibson, S. Tomczyk, K. K. Reeves, A. C. Sterling, D. H. Brooks, D. R. Williams, and D. Tripathi (2009), Large-Scale Flows In Prominence Cavities, The Astrophysical Journal Letters, 700, L96-L98, doi:10.1088/0004-637x/700/2/l96.
  854. Schou, J. (1997), Solar Internal Rotation, Kyoto, Japan, 18-22 August, 1997.
  855. Schou, J., and M. J. Thompson (1998), The Rotation of the Solar Core Inferred by Genetic Forward Modeling, The Astrophysical Journal, 496, 1015-1030.
  856. Schou, J., and S. Tomczyk (1995), Preliminary Results from Observations with the LOWL Instrument, GONG '94: Helio- and Astero-Seismology, ASP Conference Series, 76.
  857. Schou, J., S. Tomczyk, and M. J. Thompson (1995), A measurement of the rotation rate in the deep solar interior, ESA Publication, 1995.
  858. Schou, J., S. Tomczyk, and M. J. Thompson (1996), Results From the LOWL Instrument, Bull.Ast.Soc.India, 24, No. 2, 375.
  859. Schrijver, C. J., C. Elmore, B. Kliem, T. Török, and A. M. Title (2008), Observations and Modeling of the Early Acceleration Phase of Erupting Filaments Involved in Coronal Mass Ejections, Astrophysical Journal, 674, 586-595, doi:10.1086/524294; eprintid: arXiv:0710.1609.
  860. Schwartz, P., J. Ambroz, P. Gömöry, M. Kozák, A. Kucera, J. Rybák, S. Tomczyk, S. Sewell, P. Aumiller, and R. Summers (2014), Coronal Multi-channel Polarimeter at the Lomnicky Peak Observatory, paper presented at IAU Symposium.
  861. Schwartz, P., J. Ambroz, P. Gömöry, M. Kozák, A. Kučera, J. Rybák, S. Tomczyk, S. Sewell, P. Aumiller, and R. Summers (2013), Coronal Multi-channel Polarimeter at the Lomnicky Peak Observatory, Nature of Prominences and their role in Space Weather, 8(S300), 521-522, doi:10.1017/s1743921313011812.
  862. Schwartz, P., J. Rybák, A. Kučera, M. Kozák, J. Ambróz, and P. Gömöry (2012), A quiescent prominence observed in the Hα line by the COMP-S instrument at the Lomnický Peak Observatory, Contributions of the Astronomical Observatory Skalnate Pleso, 42, 135-146.
  863. Schwenn, R., et al. (2006), Coronal Observations of CMEs, Space Science Reviews, 123(1), 127-176, doi:10.1007/s11214-006-9016-y.
  864. Seagraves, P. H. (1982), The High Altitude Observatory multi-user FORTH system listing, NASA STI/Recon Technical Report N, 83, 23257.
  865. Seagraves, P. H., and D. G. Sime (1987), An Attempt to Estimate Sky Polarization Effects at Mauna Loa Solar Observatory, 1987.
  866. Shakhovskaya, A., M. Livshits, and I. Chertok (2006), The role of plasma ejections in the development of large solar flares of various durations, Astronomy Reports, 50(12), 1013-1025, doi:10.1134/s1063772906120067.
  867. Shapiro, A. V., A. I. Shapiro, M. Dominique, I. E. Dammasch, C. Wehrli, E. Rozanov, and W. Schmutz (2012), Detection of Solar Rotational Variability in the Large Yield RAdiometer (LYRA) 190 - 222 nm Spectral Band, Solar Physics, 121, doi:10.1007/s11207-012-0029-2; eprintid: arXiv:1205.2377.
  868. Sheiner, O., A. Rakhlin, V. Fridman, and F. Vybornov (2020), New ionospheric index for Space Weather services, Advances in Space Research, 66(6), 1415-1426, doi:10.1016/j.asr.2020.05.022.
  869. Shen, C., C. Liao, Y. Wang, P. Ye, and S. Wang (2012), Source Region of the Decameter–Hectometric Type II Radio Burst: Shock–Streamer Interaction Region, Solar Physics, 1-10, doi:10.1007/s11207-012-0161-z.
  870. Shen, F., X. Feng, and C. Xiang (2011a), Improvement to the global distribution of coronal plasma and magnetic field on the source surface by using expansion factor< i> f</i>< sub> s</sub> and angular distance< i> θ</i>< sub> b</sub>, Journal of Atmospheric and Solar-Terrestrial Physics, doi:10.1016/j.jastp.2011.12.009.
  871. Shen, F., X. Feng, C. Xiang, and W. Song (2010), The statistical and numerical study of the global distribution of coronal plasma and magnetic field near 2.5 Rs over a 10-year period, Journal of Atmospheric and Solar-Terrestrial Physics, 72(13), 1008-1018, doi:10.1016/j.jastp.2010.05.016.
  872. Shen, F., X. Feng, C. Xiang, and S. Wu (2013), Modeling Source Surface Plasma and Magnetic Field Based on Expansion Factor fS and Angular Distance θb Between the Foot Points, paper presented at Numerical Modeling of Space Plasma Flows (ASTRONUM2012).
  873. Shen, F., X. S. Feng, Y. Wang, S. T. Wu, W. B. Song, J. P. Guo, and Y. F. Zhou (2011b), Three‐dimensional MHD simulation of two coronal mass ejections’ propagation and interaction using a successive magnetized plasma blobs model, J.Geophys.Res, 116, A09103, doi:10.1029/2011ja016584, 2011.
  874. Shibahashi, H. (1999), What the helioseismic results mean for the solar interior, Advances in Space Research, 24, 137-145.
  875. Shibahashi, H., K. M. Hiremath, and M. Takata (1999), Seismic solar model: both of the radiative core and the convective envelope, Advances in Space Research, 24, 177-180.
  876. Shibahashi, H., and M. Takata (1997), Making a Seismic Solar Model and an Estimate of the Solar Neutrino Fluxes, Dordrecht: Kluwer, 1997.
  877. Sime, D. G. (1985), The Corona and Interplanetary Medium During the Solar Cycle, in Future Missions in Solar, A2 E. Rolfe, ESA SP-235, European Space Agency, Paris, France.
  878. Sime, D. G. (1986), The Structure and Rotation of the Solar Corona: Implications for the Heliosphere, in The Sun and the Heliosphere in 3 Dimensions, Publishing Company, Dordrecht, Holland, pp.45-52.
  879. Sime, D. G. (1989), Coronal Mass Ejection Rate and the Evolution of the Large-Scale K-Coronal Density Distribution, Journal of Geophysical Research, 94 (A1), 151-158.
  880. Sime, D. G., and R. R. Fisher (1993), Correction to the field of view for the high altitude observatory mark III K-coronameter, Solar Physics, 144(1), 75-87.
  881. Sime, D. G., R. R. Fisher, and R. C. Altrock (1985), Solar coronal white light, Fe 10, Fe 14 and CA 15 observations during 1984: an atlas of synoptic charts, NASA STI/Recon Technical Report N, 86, 16179.
  882. Sime, D. G., R. R. Fisher, and R. C. Altrock (1989), Rotation Characteristics of the Fe XIV (5303 Å) Solar Corona, Astrophys.Journal, 336, 454.
  883. Sime, D. G., R. R. Fisher, C. Garcia, J. R. Najita, K. A. Rock, P. H. Seagraves, E. Yasukawa, M. K. McCabe, and D. L. Mickey (1983a), 2nd Joint Solar Dynamics Project data summary: Solar magnetic field, chromospheric and coronal observations near the time of the 11 June 1983 solar eclipseRep.
  884. Sime, D. G., R. R. Fisher, C. J. Garcia, J. R. Najita, K. A. Rock, P. H. Seagraves, E. A. Yasukawa, M. K. McCabe, and D. A. Mickey (1983b), The Second Joint Solar Dynamics Project Data Summary, NCAR Technical Note, TN-213+STR.
  885. Sime, D. G., R. R. Fisher, M. K. McCabe, and D. L. Mickey (1984a), The Corona Near the Time of the 1983 June 11 Total Solar Eclipse, Astrophys.Journal, 278, L123-L126.
  886. Sime, D. G., R. R. Fisher, and D. L. Mickey (1988a), Solar coronal and magnetic field observations near the time of the 1988 March 18 solar eclipse, Astrophysical Journal, 333, L103-L107, doi:10.1086/185297.
  887. Sime, D. G., C. Garcia, E. Lundin, E. Yasukawa, and D. Mickey (1988b), The Third Joint Solar Dynamics Project Data Summary: Solar Magnetic Field, Chromospheric and Coronal Observations Near the Time of the 18 March 1988 Solar Eclipse, NCAR Technical Note, TN-326+STR.
  888. Sime, D. G., C. Garcia, E. Yasukawa, and E. Lundin (1990a), The White Light Solar Corona: An Atlas of 1988 K-coronameter Synoptic Charts December 1987-1989, NCAR Technical Note, TN-346+STR.
  889. Sime, D. G., C. Garcia, E. Yasukawa, and E. Lundin (1990b), Whie light solar corona: an atlas of 1988 K-coronameter synoptic charts, December 1987 to January 1989, NASA STI/Recon Technical Report N, 91, 11649.
  890. Sime, D. G., C. Garcia, E. Yasukawa, E. Lundin, F. Hoffman, and P. Reppert (1988c), White light solar corona: an atlas of 1987 K-coronameter synoptic charts, December 1986 - January 1988Rep.
  891. Sime, D. G., C. Garcia, E. Yasukawa, E. Lundin, and K. Rock (1986), White light solar corona: an atlas of 1985 K-coronameter synoptic charts, December 1984 - December 1985Rep.
  892. Sime, D. G., C. Garcia, E. Yasukawa, E. Lundin, and K. Rock (1987), White light solar corona: an atlas of 1986 K-coronameter synoptic charts, December 1985 - January 1987Rep.
  893. Sime, D. G., and A. J. Hundhausen (1994), Coronal Eruptive Events on April 4, and May 4, 1992, X-Ray Solar Physics from Yohkoh, University of Academy Press,Inc.
  894. Sime, D. G., and M. K. McCabe (1990), The Structure of the White-Light Corona and the Large-Scale Solar Magnetic Limb, Solar Physics, 126, 267-284.
  895. Sime, D. G., K. A. Rock, and R. R. Fisher (1984b), Stability of an uncooled Reticon detector system at Mauna Loa Solar Observatory: a simple calibration scheme, 1984.
  896. Sime, D. G., and J. Streete (1993), Solar coronal structure near the time of the 1991 July 11 total solar eclipse, Astrophysical Journal, 408, 368-372, doi:10.1086/172593.
  897. Sime, D. G. a. B. J. R. (1978), The Latitude and Longitude Structure of the Solar Wind Speed from IPS Observations, Journal of Geophysical Research, 83 (A12), 5757-5762.
  898. Sime, D. G. a. B. J. R. (1981), Coronal Density and Solar Wind Speed at All Heliographic Latitudes, Journal of Geophysical Research, 86, 8869-8876.
  899. Singh, J., R. Belur, S. Raju, K. Pichaimani, M. Priyal, T. Gopalan Priya, and A. Kotikalapudi (2012), Determination of the chromospheric quiet network element area index and its variation between 2008 and 2011, Research in Astronomy and Astrophysics, 12(4), 472.
  900. Singh, J., Sakurai, Ichimoto, and Hiei (2000), On the formation of a helmet streamer on January 24, 1992 at the south-west limb, Bulletin of the Astron.Soc.of India, 28, 33.
  901. Singh, J., T. Sakurai, and K. Ichimoto (2001), On the disappearance of H-alpha filaments and soft X-ray enhancements as seen from Yohkoh SXT, Bulletin of the Astronomical Society of India, 29, 193-202.
  902. Singh, K., and T. Van Doorsselaere (2008), New avenues in solar physics science with Hinode, Current science, 95(2), 159-161.
  903. Sitongia, L. (2007), A Proposed Framework For Processing Solar Observations, 2007.
  904. Skomorovsky, V. I., V. D. Trifonov, G. P. Mashnich, Y. S. Zagaynova, V. G. Fainshtein, G. I. Kushtal, and S. A. Chuprakov (2011), Characteristic features of the solar corona during the eclipse of 1 August 2008, Arxiv preprint arXiv:1105.0779.
  905. Skomorovsky, V. I., V. D. Trifonov, G. P. Mashnich, Y. S. Zagaynova, V. G. Fainshtein, G. I. Kushtal, and S. A. Chuprakov (2012), White-Light Observations and Polarimetric Analysis of the Solar Corona During the Eclipse of 1 August 2008, Solar Physics, 277(2), 267-281, doi:10.1007/s11207-011-9910-7.
  906. Slemzin, V., O. Bougaenko, A. Ignatiev, S. Kuzin, A. Mitrofanov, A. Pertsov, and I. Zhitnik (2008), Off-limb EUV observations of the solar corona and transients with the CORONAS-F/SPIRIT telescope-coronagraph, paper presented at Annales geophysicae, Springer-Verlag GmbH, 2008.
  907. Slemzin, V., L. Harra, A. Urnov, S. Kuzin, F. Goryaev, and D. Berghmans (2012), Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona, Solar Physics, 286(1), 157-184, doi:10.1007/s11207-012-0004-y.
  908. Snow, M., J. Clarke, W. Curdt, R. Gladstone, M. Haberreiter, G. Holsclaw, V. Izmodenov, M. Kretzschmar, and E. Quémerais (2016), Solar Heliospheric Lyman Alpha Profile Effects (SHAPE).
  909. Socki, R. A., E. K. Gibson, Jr., and K. K. Bissada (2006), Isotope Variations in Terrestrial Carbonates and Thermal Springs as Biomarkers: Analogs for Martian Processes, 2006.
  910. Soler, R., J. Andries, and M. Goossens (2012), Resonant Alfvén waves in partially ionized plasmas of the solar atmosphere, Astronomy and Astrophysics, 537, 9, doi:10.1051/0004-6361/201118235; eprintid: arXiv:1111.4134.
  911. Soler, R., J. Terradas, and M. Goossens (2011a), Spatial Damping of Propagating Kink Waves Due to Resonant Absorption: Effect of Background Flow, The Astrophysical Journal, 734, 80, doi:10.1088/0004-637x/734/2/80.
  912. Soler, R., J. Terradas, G. Verth, and M. Goossens (2011b), Resonantly Damped Propagating Kink Waves in Longitudinally Stratified Solar Waveguides, The Astrophysical Journal, 736, 10, doi:10.1088/0004-637x/736/1/10.
  913. Solov’ev, A., V. Efremov, L. Parfinenko, and E. Kirichek (2015), Large convective cells in the sun: a theoretical model, Geomagnetism and Aeronomy, 55(8), 1054-1059, doi:10.1134/s0016793215080277.
  914. Song, H., Y. Chen, D. Ye, G. Han, G. Du, G. Li, J. Zhang, and Q. Hu (2013), A Study of Fast Flareless Coronal Mass Ejections, The Astrophysical Journal, 773(2), 129, doi:10.1088/0004-637x/773/2/129.
  915. Srivastava, N. (2009), Coronal Mass Ejections and Associated Phenomena, paper presented at Physics of the Sun and Its Atmosphere: Proceedings of the National Workshop (India) on" Recent Advances in Solar Physics" Meerut College, Meerut, India 7-10 November 2006, World Scientific Publishing Company, 2009.
  916. Srivastava, N. (2010), CME observations from STEREO, Magnetic Coupling between the Interior and Atmosphere of the Sun, 308-317, doi:10.1007/978-3-642-02859-5_25.
  917. Srivastava, N., J. T. Burkepile, and J. A. Darnell (2003), CONDITIONS LEADING TO ERUPTIONS OF CMEs ASSOCIATED WITH ERUPTIVE FILAMENTS, AGU Fall Meeting Abstracts, 42, 0504.
  918. St. Cyr, O., Q. Flint, H. Xie, D. Webb, J. Burkepile, A. Lecinski, C. Quirk, and A. Stanger (2015), MLSO Mark III K-Coronameter Observations of the CME Rate from 1989–1996, Solar Physics, 290, 2951-2962, doi:10.1007/s11207-015-0780-2.
  919. St. Cyr, O., A. Posner, and J. Burkepile (2017), Solar energetic particle warnings from a coronagraph, Space Weather, 15(1), 240-257, doi:10.1002/2016sw001545.
  920. St. Cyr, O. C., J. T. Burkepile, A. J. Hundhausen, and A. R. Lecinski (1999), A comparison of ground-based and spacecraft observations of coronal mass ejections from 1980-1989, Journal of Geophysical Research, 104, 12493-12506, doi:10.1029/1999ja900045.
  921. St. Cyr, O. C., J. M. Davila, W. Thompson, B. J. Thompson, J. B. Gurman, J. T. Burkepile, and G. de Toma (2007), Early Results from STEREO SECCHI COR1, 2007.
  922. St. Cyr, O. C., R. A. Howard, N. R. Sheeley Jr, S. P. Plunkett, D. J. Michels, S. E. Paswaters, M. J. Koomen, G. M. Simnett, B. J. Thompson, and J. B. Gurman (2000), Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998, J.Geophys.Res, 105, 18169-18185.
  923. St. Cyr, O. C., and D. F. Webb (1991), Activity associated with coronal mass ejections at solar minimum: SMM observations from 1984?1986, Solar Physics, 136(2), 379-394.
  924. Steinegger, M., P. N. Brandt, and H. F. Haupt (1996), Sunspot irradiance deficit, facular excess, and the energy balance of solar active regions, A&A, 310, 635.
  925. Steinolfson, R. S. (1985), Theories of Shock Formation in the Solar Atmosphere, in Collisionless Shocks in the Heliosphere: Reviews of Current Research, Geophysical Monograph 35, 1-12.
  926. Stewart, R. T., R. T. Hansen, and K. V. Sheridan (1979), Estimates of the Magnetic Energy Densities of Two Eruptive Prominences from Their Close Association with Moving Type IV Radio Bursts, Proc.of the International Astronomical Union Colloquium 44, Physics of Solar Prominences, Oslo, 315-321.
  927. Stewart, R. T., R. A. Howard, F. Hansen, T. Gergely, and M. Kundu (1974), Observations of Coronal Disturbances from 1 to 9 Solar Radii II: Second Event of 1973 January 11, Solar Physics, 36, 219-231.
  928. Strachan, L., Y.-K. Ko, J. Moses, J. Laming, F. Auchere, R. Casini, S. Fineschi, S. Gibson, M. Knoelker, and C. Korendyke (2014), Waves and Magnetism in the Solar Atmosphere (WAMIS), Proceedings of the International Astronomical Union, 10(S305), 121-126, doi:10.1017/s1743921315004639.
  929. Strachan, L., Y. K. Ko, A. V. Panasyuk, D. Dobrzycka, J. L. Kohl, M. Romoli, G. Noci, S. E. Gibson, and D. A. Biesecker (1999), Constraints on Coronal Outflow Velocities Derived from UVCS Doppler Dimming Measurements and in-Situ Charge State Data, Space Science Reviews, 87, 311-314, doi:10.1023/a:1005193711445.
  930. Strachan, L., A. V. Panasyuk, D. Dobrzycka, S. Gibson, D. A. Biesecker, Y. K. Ko, A. B. Galvin, M. Romoli, and J. L. Kohn (1998), Coronal Outflow Velocities in a 3D Coronal Model Determined from UVCS Doppler Dimming Observations, 79, 278.
  931. Strachan, L., A. V. Panasyuk, D. Dobrzycka, J. L. Kohl, G. Noci, S. E. Gibson, and D. A. Biesecker (2000), Latitudinal dependence of outflow velocities from O VI Doppler dimming observations during the Whole Sun Month, Journal of Geophysical Research, 105, 2345-2356, doi:10.1029/1999ja900459.
  932. Struminsky, A. B., and I. V. Zimovets (2007), Development dynamics of intense solar proton flares, Astronomy Letters, 33(9), 615-621, doi:10.1134/s1063773707090058.
  933. Su, Y., A. Ballegooijen, and L. Golub (2010), Structure and Dynamics of Quiescent Filament Channels Observed by Hinode/XRT and STEREO/EUVI, The Astrophysical Journal, 721, 901, doi:10.1088/0004-637x/721/1/901.
  934. Su, Y., A. van Ballegooijen, and L. Golub (2009a), Observations Of Filament Channels By Hinode/XRT And STEREO/EUVI, 2009.
  935. Su, Y., A. Van Ballegooijen, and L. Golub (2012), Asymmetric Structure of Quiescent Filament Channels Observed by Hinode/XRT and STEREO/EUVI, arXiv preprint arXiv:1208.1529.
  936. Su, Y., A. van Ballegooijen, B. W. Lites, E. E. Deluca, L. Golub, P. C. Grigis, G. Huang, and H. Ji (2009b), Observations and Nonlinear Force-Free Field Modeling of Active Region 10953, Astrophysical Journal, 691, 105-114, doi:10.1088/0004-637x/691/1/105.
  937. Subramanian, P., and K. P. Dere (2001), Source Regions of Coronal Mass Ejections, The Astrophysical Journal, 561(1), 372-395.
  938. Suess, S. T., A. Bemporad, and G. Poletto (2004), A slow streamer blowout at the Sun and Ulysses, Geophys.Res.L., 31.
  939. Susino, R., and A. Bemporad (2016), DETERMINATION OF CORONAL MASS EJECTION PHYSICAL PARAMETERS FROM A COMBINATION OF POLARIZED VISIBLE LIGHT AND UV Lyα OBSERVATIONS, The Astrophysical Journal, 830(2), 58, doi:10.3847/0004-637x/830/2/58.
  940. Takata, M., and H. Shibahashi (1997), Seismic Solar Models and the Neutrino Problem, Dordrecht: Kluwer, 1997.
  941. Takata, M. a. H. S. (1998), Solar Models Based on Helioseismology and the Solar Neutrino Problem, The Astrophysical Journal, 504, 1035-1050.
  942. Taliashvili, L., Z. Mouradian, and J. Páez (2009), Dynamic and Thermal Disappearance of Prominences and Their Geoeffectiveness, Solar Physics, 258(2), 277-295, doi:10.1007/s11207-009-9414-x.
  943. Tandberg-Hanssen, E., R. T. Hansen, and A. C. Riddle (1975), A Distinctive Type of Ascending Prominence - Fountain, Solar Physics, 44, 417-427.
  944. Tao, J. (2012), Integrity Constraints for the Semantic Web: An OWL 2 DL Extension.
  945. Tappin, S. J., and R. C. Altrock (2012), The Extended Solar Cycle Tracked High into the Corona, Solar Physics, 282(1), 249-261, doi:10.1007/s11207-012-0133-3.
  946. Temmer, M., A. M. Veronig, E. P. Kontar, S. Krucker, and B. Vrsnak (2010), Combined STEREO/RHESSI study of CME acceleration and particle acceleration in solar flares, Arxiv preprint arXiv:1002.3080, doi:10.1088/0004-637x/712/2/1410.
  947. Temmer, M., A. M. Veronig, B. Vrsnak, J. Rybak, P. Gomory, S. Stoiser, and D. Maricic (2008), Acceleration in Fast Halo CMEs and Synchronized Flare HXR Bursts, The Astrophysical Journal Letters, 673(1), L95-L98; L95-L98, doi:10.1086/527414.
  948. Terradas, J., M. Goossens, and G. Verth (2010), Selective spatial damping of propagating kink waves due to resonant absorption, Arxiv preprint arXiv:1004.4468, doi:10.1051/0004-6361/201014845.
  949. Thernisien, A., A. Vourlidas, and R. A. Howard (2010), CME reconstruction: Pre-STEREO and STEREO era, Journal of Atmospheric and Solar-Terrestrial Physics, doi:10.1016/j.jastp.2010.10.019.
  950. Thompson, B. J., S. E. Gibson, P. C. Schroeder, D. F. Webb, C. N. Arge, M. M. Bisi, G. de Toma, B. A. Emery, A. B. Galvin, and D. A. Haber (2012), A snapshot of the Sun near solar minimum: the whole heliosphere interval, Solar Physics, 1-28, doi:10.1007/s11207-011-9891-6.
  951. Thompson, M. J., S. Tomczyk, S. E. Gibson, S. W. McIntosh, and E. Landi (2018), The Coronal Solar Magnetism Observatory, Proceedings of the International Astronomical Union, 13(S335), 359-361, doi:10.1017/S1743921317011334.
  952. Thompson, W. T., and N. L. Reginald (2008), The Radiometric and Pointing Calibration of SECCHI COR1 on STEREO, Solar Physics, 250, 443-454, doi:10.1007/s1120-008-9228-2.
  953. Thompson, W. T., O. C. St Cyr, J. Burkepile, and A. Posner (2017), Automatic near‐real‐time detection of CMEs in Mauna Loa K‐Cor coronagraph images, Space Weather, doi:10.1002/2017sw001694.
  954. Thompson, W. T., K. Wei, J. T. Burkepile, J. M. Davila, and O. C. St. Cyr (2010), Background Subtraction for the SECCHI/COR1 Telescope Aboard STEREO, Solar Physics, 262(1), 213-231, doi:10.1007/s11207-010-9513-8.
  955. Threlfall, J., I. De Moortel, S. McIntosh, and C. Bethge (2013), First Comparison of Wave Observations from CoMP and AIA/SDO, arXiv preprint arXiv:1306.3354.
  956. Thuillier, G., D. Bolsée, G. Schmidtke, T. Foujols, B. Nikutowski, A. Shapiro, R. Brunner, M. Weber, C. Erhardt, and M. Hersé (2014), The Solar Irradiance Spectrum at Solar Activity Minimum Between Solar Cycles 23 and 24, Solar Physics, 1-28, doi:10.1007/s11207-013-0461-y.
  957. Tian, H., S. W. McIntosh, T. Wang, L. Ofman, B. De Pontieu, D. E. Innes, and H. Peter (2012), Persistent Doppler shift oscillations observed with HINODE/EIS in the solar corona: spectroscopic signatures of Alfvenic waves and recurring upflows, ApJ, 759(2), doi:10.1088/0004-637x/759/2/144.
  958. Tian, H., S. Tomczyk, S. McIntosh, C. Bethge, G. de Toma, and S. Gibson (2013a), Observations of Coronal Mass Ejections with the Coronal Multichannel Polarimeter, Solar Physics, 1-14, doi:10.1007/s11207-013-0317-5.
  959. Tian, H., S. Tomczyk, S. W. McIntosh, C. Bethge, L. Sitongia, G. de Toma, P. Judge, and S. Gibson (2013b), CoMP observations of Coronal Mass Ejections.
  960. Tiwari, A. K., R. J. Morton, S. Régnier, and J. A. McLaughlin (2019), Damping of propagating kink waves in the solar corona, The Astrophysical Journal, 876(2), 106, doi:10.1007/s11207-019-1428-4.
  961. Tlatov, A., D. Dormidontov, R. Kirpichev, M. Pashchenko, and A. Shramko (2015), Synoptic and fast events on the sun according to observations at the center and wings of the Ca II K line at the Kislovodsk Mountain station patrol telescope, Geomagnetism and Aeronomy, 55(7), 961-968, doi:10.1134/s0016793215070245.
  962. Tlatov, A. G. (2010), The Non-radial Propagation of Coronal Streamers within a Solar Cycle, The Astrophysical Journal, 714, 805-809, doi:10.1088/0004-637x/714/1/805.
  963. Tlatov, A. G., and B. P. Filippov (2012), Impact of the Large-Scale Solar Magnetic Field on the Solar Corona and Solar Wind, Exploring the Solar Wind, ISBN: 978-51-0339-4, DOI: 10.5772/36795, doi:10.5772/36795.
  964. Tlatov, A. G., and V. V. Vasil'eva (2009), The non-radial propagation of coronal streamers in minimum activity epoch, Proceedings of the International Astronomical Union, 5(S264), 292-294, doi:10.1017/s1743921309992821.
  965. Toeroek, T., M. A. Berger, and B. Kliem (2010), The writhe of helical structures in the solar corona, Astronomy and Astrophysics, 516, 49, doi:10.1051/0004-6361/200913578.
  966. Tomczyk, S. (1995), Spatially Resolved Observations of Low-Degree Solar Oscillations, 1995.
  967. Tomczyk, S., C. Bethge, S. E. Gibson, S. W. McIntosh, L. A. Rachmeler, and H. Tian (2012), Recent Results from the Coronal Multi-Channel Polarimeter, paper presented at American Astronomical Society Meeting Abstracts, 2012.
  968. Tomczyk, S., J. Burkepile, R. Casini, G. de Toma, Y. Fan, P. G. Judge, H. Lin, B. C. Low, S. W. McIntosh, and P. G. Nelson (2010), A Response to the Request for Information from the NRC Decadal Survey in Solar and Space Physics.
  969. Tomczyk, S., A. Cacciani, and S. A. Veitzer (1992), LOWL - An instrument to observe low-degree solar oscillations, P.A.S.P. Conference Proceedings, 1992.
  970. Tomczyk, S., G. Card, T. Darnell, D. Elmore, R. Lull, P. Nelson, K. Streander, J. Burkepile, R. Casini, and P. Judge (2008), An Instrument to Measure Coronal Emission Line Polarization, Solar Physics, 247(2), 411-428, doi:10.1007/s11207-007-9103-6.
  971. Tomczyk, S., P. Charbonneau, J. Schou, and M. J. Thompson (1995a), Constraining solar core rotation with genetic forward modeling, ESA Publication, 1995.
  972. Tomczyk, S., E. Landi, J. Burkepile, R. Casini, E. DeLuca, Y. Fan, S. Gibson, H. Lin, S. McIntosh, and S. Solomon (2016a), Scientific objectives and capabilities of the Coronal Solar Magnetism Observatory, Journal of Geophysical Research: Space Physics, doi:10.1002/2016ja022871.
  973. Tomczyk, S., S. Mathew, and D. Gallagher (2016b), Development of a tunable filter for coronal polarimetry, Journal of Geophysical Research: Space Physics, 121(7), 6184-6195, doi:10.1002/2016ja022682.
  974. Tomczyk, S., and S. W. McIntosh (2009), Time-Distance Seismology of the Solar Corona with CoMP, The Astrophysical Journal, 697, 1384, doi:10.1088/0004-637x/697/2/1384.
  975. Tomczyk, S., S. W. McIntosh, S. L. Keil, P. G. Judge, T. Schad, D. H. Seeley, and J. Edmondson (2007), Alfvén waves in the solar corona, Science, 317(5842), 1192, doi:10.1126/science.1143304.
  976. Tomczyk, S., J. Schou, and M. J. Thompson (1995b), Measurement of the Rotation Rate in the Deep Solar Interior, ApJ, 448, L57-L60.
  977. Tomczyk, S., J. Schou, and M. J. Thompson (1996), Low-degree frequency splitting measurements and the rotation rate of the solar core, Bulletin of the Astronomical Soceity of India, 24, 245.
  978. Tomczyk, S., K. Streander, G. Card, D. Elmore, and H. H. a. A. Cacciani (1995c), An instrument to observe low-degree solar oscillations Solar Physics, Solar Physics, 159, 1-21.
  979. Topchiyska, R., and N. Zahariev (2013), Self consistent 1D numerical calculation of the temperature profile of solar corona heated by Alfvén waves, paper presented at AIP Conference Proceedings.
  980. Toutain, T. (2001), Measurements of Rotational Frequency Splitting of Low Angular Degree Modes, Sol Phys, 200, 353.
  981. Tripathi, D., S. E. Gibson, J. Qiu, L. Fletcher, R. Liu, H. Gilbert, and H. E. Mason (2009a), Partially-erupting prominences: a comparison between observations and model-predicted observables, Astronomy and Astrophysics, 498, 295-305, doi:10.1051/0004-6361/200809801; eprintid: arXiv:0902.1228.
  982. Tripathi, D., H. Isobe, and R. Jain (2009b), Large amplitude oscillations in prominences, Space science reviews, 149(1), 283-298, doi:10.1007/s11214-009-9583-9.
  983. Tripathi, D., K. K. Reeves, S. E. Gibson, A. Srivastava, and N. C. Joshi (2013), SDO/AIA Observations of a Partially Erupting Prominence, The Astrophysical Journal, 778(2), 142, doi:10.1088/0004-637x/778/2/142.
  984. Tripathi, D., S. K. Solanki, H. E. Mason, and D. F. Webb (2007), A bright coronal downflow seen in multi-wavelength observations: evidence of a bifurcating flux-rope?, Astronomy and Astrophysics, 472, 633-642, doi:10.1051/0004-6361:20077707; eprintid: arXiv:0802.3616.
  985. Tripathy, S. C., S. Basu, and D. Christensen (1998), Helioseismic Determination of Opacity Corrections, Nice: Obs. de la Cote d'Azur, 1998.
  986. Tripathy, S. C., B. Kumar, K. Jain, and A. Bhatnagar (2001), Analysis of hysteresis effect in p-mode frequency shifts and solar activity indices, Solar Physics, 200(1), 3-10.
  987. Tsurutani, B. T., et al. (2006), Corotating solar wind streams and recurrent geomagnetic activity: A review, J.Geophys.Rev., 111, A07S01, doi:10.1029/2005ja011273.
  988. Turck, C., et al. (1998a), Sensitivity of the Sound Speed to the Physical Processes Included in the Standard Solar Model, ESA-SP-418, Noordwijk: ESA Publications Division, 1998.
  989. Turck, C., et al. (1998b), Comparison of Predicted Acoustic Mode Frequencies with Preliminary Golf Results, Nice: Obs. de la Cote d'Azur, 1998.
  990. Turck-Chieze, S. (1998), Composition and Opacity in the Solar Interior, Space Science Reviews, 85, 125-132.
  991. Turck-Chiéze, S., and c. and (1997), First View of the Solar Core from GOLF Acoustic Modes, Sol Phys, 175, 247-265.
  992. Uzzo, M., Y. K. Ko, J. C. Raymond, P. Wurz, and F. M. Ipavich (2003), Elemental Abundances for the 1996 Streamer Belt, The Astrophysical Journal, 585, 1062-1072.
  993. Uzzo, M., L. Strachan, and A. Vourlidas (2007), The Physical Properties of Coronal Streamers. II, The Astrophysical Journal, 671(1), 912-925, doi:10.1086/522909.
  994. Uzzo, M., L. Strachan, A. Vourlidas, Y. K. Ko, and J. C. Raymond (2006), Physical Properties of a 2003 April Quiescent Streamer, The Astrophysical Journal, 645, 720-731, doi:10.1086/504286.
  995. Van Doorsselaere, T., D. C. C. Birtill, and G. R. Evans (2009), Detection of three periodicities in a single oscillating coronal loop, Astronomy and Astrophysics, 508(3), 1485-1491, doi:10.1051/0004-6361/200912753.
  996. Van Doorsselaere, T., C. S. Brady, E. Verwichte, and V. M. Nakariakov (2008), Seismological demonstration of perpendicular density structuring in the solar corona, Astronomy and Astrophysics, 491(2), 9-12, doi:10.1051/0004-6361:200810659.
  997. Van Doorsselaere, T., A. K. Srivastava, P. Antolin, N. Magyar, S. V. Farahani, H. Tian, D. Kolotkov, L. Ofman, M. Guo, and I. Arregui (2020), Coronal heating by MHD waves, Space Science Reviews, 216(8), 1-40, doi:10.1007/s11214-020-00770-y.
  998. van Driel-Gesztelyi, L., et al. (1998), Filament Disparition Brusque & CME, New Perspectives on Solar Prominences IAU Coll.167 (1998), ASP Conference Series, 150, 366-369.
  999. Vanlommel, P., and V. M. Cadez (1998), Influence of Temperature Profile on Solar Acoustic Modes, Solar Physics, 182, 263-281.
  1000. Vasquez, A. M., A. v. B. Adriaan, and C. R. John (2003), The Effect of Proton Temperature Anisotropy on the Solar Minimum Corona and Wind, The Astrophysical Journal, 598, 1361-1374.
  1001. Vasquez, A. M., R. A. Frazin, K. Hayashi, I. V. Sokolov, O. Cohen, W. B. Manchester, and F. Kamalabadi (2008), Validation of Two MHD Models of the Solar Corona with Rotational Tomography, Astrophysical Journal, 682, 1328-1337, doi:10.1086/589682.
  1002. Vatistas, G. H. (2011), Sunspots are in many ways similar to terrestrial vortices, Arxiv preprint arXiv:1110.1215.
  1003. Veitzer, S. A., S. Tomczyk, and J. Schou (1993), Requirements for the Observation of Low-Degree Solar Oscillations, 1993.
  1004. Verdini, A., M. Velli, and E. Buchlin (2009), Turbulence in the Sub-Alfvénic Solar Wind Driven by Reflection of Low-Frequency Alfvén Waves, The Astrophysical Journal Letters, 700, L39, doi:10.1088/0004-637x/700/1/l39.
  1005. Verneta, A. J. (1997), On the Problem of the Relationship Between Solar Flares and Coronal Mass Ejections, Solar Physics, 170, 357-364.
  1006. Verth, G., J. Terradas, and M. Goossens (2010), Observational evidence of resonantly damped propagating kink waves in the solar corona, The Astrophysical Journal Letters, 718, L102, doi:10.1088/2041-8205/718/2/l102.
  1007. Verwichte, E., T. Van Doorsselaere, R. S. White, and P. Antolin (2013), Statistical seismology of transverse waves in the solar corona, Astronomy & Astrophysics, doi:10.1051/0004-6361/201220456.
  1008. Vidotto, A. A., and V. Jatenco-Pereira (2009), Alfvén waves as a driving mechanism in stellar winds, Advances in Space Research, doi:10.1016/j.asr.2008.12.025.
  1009. Vogler, F., P. Brandt, W. Otruba, W. Pötzi, and A. Hanslmeier (2008), Defects in Some RISE/PSPT Full Disk Solar Images from Mauna Loa Solar Observatory, Central European Astrophysical Bulletin, 32, 141-148.
  1010. Vogler, F. L., P. N. Brandt, W. Otruba, and A. Hanslmeier (2005a), Center-to-limb variation of facular contrast derived from MLSO/RISE full disk images, 2005.
  1011. Vogler, F. L., P. N. Brandt, W. Otruba, and A. Hanslmeier (2005b), Solar Irradiance Variations Modelled from Ca II K Excess and Magnetic Field, Hvar Observatory Bulletin, 29, 79-88.
  1012. Vourlidas, A., B. Kliem, and S. Patsourakos (2010), Toward Understanding the Early Stags of an Impulsively Accelerated Coronal Mass Ejection, Storming Media, Pentagon Reports, A874625.
  1013. Vrsnak, B., W. Alexander, m. Darije, O. Wolfgang, and R. Vladimir (2003a), Interaction of an erupting filament with the ambient magnetoplasma and escape of electron beams, Solar Phys., 217, 187-198.
  1014. Vrsnak, B., M. Darije, L. S. Andrew, M. V. Astrid, T. Manuela, and R. Dragan (2007), Acceleration Phase of Coronal Mass Ejections: I. Temporal and Spatial Scales, Solar Physics, 241, 85, doi:10.1007/s11207-006-0290-3.
  1015. Vrsnak, B., Maricic, Stanger, L. A, and Veronig (2004), Coronal Mass Ejection of 15 May 2001: II. Coupling of the CME acceleration and the flare energy release, Solar Phys., 225, 355-378.
  1016. Vrsnak, B., D. Sudar, and D. Ruzdjak (2005), The CME-flare relationship: Are there really two types of CMEs?, A&A, 435, 1149-1157, doi:10.1051/0004-6361:20042166.
  1017. Vrsnak, B., A. Warmuth, R. Brajsa, and A. Hanslmeier (2002), Flare waves observed in Helium I 10830 Angstroms, A&A, 394, 299-310.
  1018. Vrsnak, B., A. Warmuth, R. Brajsa, and A. Hanslmeier (2003b), Flare waves observed in Helium I 10830 Angstroms: A link between Halpha Moreton and EIT waves, Astron.and Astrophys., 394, 299-310.
  1019. Vršnak, B., and E. W. Cliver (2008), Origin of Coronal Shock Waves. Invited Review, Solar Physics, 253, 215-235, doi:10.1007/s11207-008-9241-5.
  1020. Vásquez, A. M., R. A. Frazin, and F. Kamalabadi (2009), 3D Temperatures and Densities of the Solar Corona via Multi-Spacecraft EUV Tomography: Analysis of Prominence Cavities, Solar Physics, 256(1), 73-85, doi:10.​1007/​s11207-009-9321-1.
  1021. Vásquez, A. M., Z. Huang, I. V. Manchester, B. Ward, and R. A. Frazin (2010), The WHI Corona from Differential Emission Measure Tomography, Arxiv preprint arXiv:1012.5953, doi:10.1088/0004-637x/715/2/1352.
  1022. Wagner, W. (1984), Coronal Mass Ejections, Ann.Rev.Astron.Astrophys., 22, 267-289.
  1023. Wagner, W. J., R. T. Hansen, and S. F. Hansen (1974), Coronal disturbances. II: The fast rearrangement of coronal magnetic fields, Solar Physics, 34, 453-459.
  1024. Wang, A. H., S. T. Wu, E. Tandberg-Hanssen, and F. Hill (2011), Utilization of Multiple Measurements for Global Three-dimensional Magnetohydrodynamic Simulations, The Astrophysical Journal, 732, 19, doi:10.1088/0004-637x/732/1/19.
  1025. Wang, T., and J. M. Davila (2014), Validation of Spherically Symmetric Inversion by Use of a Tomographically Reconstructed Three-Dimensional Electron Density of the Solar Corona, Solar Physics, 289(10), 3723-3745, doi:10.1007/s11207-014-0556-0.
  1026. Wang, Y., X. Xianghui, S. Chenglong, Y. Pinzhong, S. Wang, and Z. Jie (2006), Impact of Major Coronal Mass Ejections on Geospace during 2005 September 7-13, The Astrophysical Journal, 646, 625-633, doi:10.1086/504676.
  1027. Warmuth, A. (2007), Large-scale Waves and Shocks in the Solar Corona, LECTURE NOTES IN PHYSICS-NEW YORK THEN BERLIN-, 725, 107-107.
  1028. Warmuth, A. (2010), Large-scale waves in the solar corona: The continuing debate, Advances in Space Research, 45(4), 527-536, doi:10.1016/j.asr.2009.08.022.
  1029. Warmuth, A., B. Vrsnak, J. Magdalenic, A. Hanslmeier, and W. Otruba (2004), A multiwavelength study of solar flare waves I. Observations and basic properties, Astron.and Astrophys., 418, 1101-1115.
  1030. Warren, H. P. (2006), NRLEUV 2: A new model of solar EUV irradiance variability, Advances in Space Research, 37(2), 359-365, doi:10.1016/j.asr.2005.10.028.
  1031. Watari, S., Z. Smith, H. A. Garcia, T. Detman, and M. Dryer (1996), Coronal Change at the South-West Limb Observed by Yohkoh on 9 November 1991, and the Subsequent Interplanetary Shock at Pioneer Venus Orbiter, Solar Physics, 167, 357-369.
  1032. Watari, S., and T. Watanabe (1998), Soft X-Ray and White Light Coronal Observations of the Post-Flare Arch on 2 November, 1991, Solar Physics, 180, 427-438.
  1033. Watari, S., T. Watanabe, L. W. Acton, and H. S. Hudson (1997), Limb Events Observed by YOHKOH and Coronal Mass Ejections: A Filamentary Soft X-ray Structure on 5 October 1996, Fifth SOHO Workshop: The Corona and Solar Wind Near Minimum Activity.
  1034. Webb, D. F. (1987), Table of Solar Activity Associated with Coronal Mass Ejections Observed by the SMM Coronagraph/Polarimeter in 1980, NCAR Technical Note, TN-297+STR.
  1035. Webb, D. F. (1992), The Solar Sources of Coronal Mass Ejections, Eruptive Solar Flares, 234.
  1036. Webb, D. F. (1995), Coronal Mass Ejections: The Key to Major Interplanetary and Geomagnetic Disturbances, Reviews of Geophysics, Supplement, U.S.National Report to International Union of Geodesy and Geophysics 1991-1994, 577-583.
  1037. Webb, D. F. (1996), CMEs as Solar Drivers of Interplanetary and Terrestrial Disturbances, Solar Drivers of Interplanetary and Terrestrial Disturbances, ASP Conference Series, 95, 219-228.
  1038. Webb, D. F. (1998a), CMEs and Prominences and Their Evolution Over the Solar Cycle in New Perspectives on Solar Prominences, IAU Colloquium 167, ASP Conference Series, (150), 463-474.
  1039. Webb, D. F. (1998b), The Characteristics of CMEs, Physics of Space Plasmas, (15).
  1040. Webb, D. F. (2000), Coronal mass ejections: origins, evolution, and role in space weather, Plasma Science, IEEE Transactions on, 28, Issue: 6, 1795-1806.
  1041. Webb, D. F. (2015), Eruptive prominences and their association with coronal mass ejections, in Solar Prominences, edited, pp. 411-432, Springer.
  1042. Webb, D. F., J. Burkepile, T. G. Forbes, and P. Riley (2003), Observational evidence of new current sheets trailing coronal mass ejections, J.Geophys.Res., 108, A12.
  1043. Webb, D. F., T. G. Forbes, H. Aurass, J. Chen, P. Martens, B. Rompolt, V. R. v. sin, and S. F. Martin (1994), Material Ejection, Solar Physics, 153, 73-89.
  1044. Webb, D. F., and T. A. Howard (2012), Coronal Mass Ejections: Observations, Living Rev.Solar Phys., 9, doi:10.12942/lrsp-2012-3.
  1045. Webb, D. F., and A. J. Hundhausen (1987), Activity associated with the solar origin of coronal mass ejections, Solar Physics, 108(2), 383-401.
  1046. Webb, D. F., S. W. Kahler, P. S. McIntosh, and J. A. Klimchuk (1997), Large-scale Structures and Multiple Neutral Lines Associated with CMEs, ournal of Geophysical Research, 102, 24161-24174.
  1047. Weiss, L. A., J. T. Gosling, A. H. McAllister, A. J. Hundhausen, J. T. Burkepile, J. L. Phillips, K. T. Strong, and R. J. Forsyth (1996), A Comparison of Interplanetary Coronal Mass Ejections at Ulysses with Yohkoh Soft X-ray Coronal Events, Astronomy & Astrophysics, 316, 384-395.
  1048. Welsch, B. T., S. Christe, and J. M. McTiernan (2011), Photospheric Magnetic Evolution in the WHI Active Regions, Solar Physics, 274, 131-157, doi:10.1007/s11207-011-9759-9; eprintid: arXiv:1103.2396.
  1049. West, P., P. Fox, D. McGuinness, and S. Zednik (2008), Infusing semantic web into operational data systems: real application experience, paper presented at AGU Fall Meeting Abstracts, 2008.
  1050. West, P., J. Michaelis, P. A. Fox, S. Zednik, and D. L. McGuinness (2010a), Presenting Provenance Based on User Roles-Experiences from the ACOS System, paper presented at AGU Fall Meeting Abstracts, 2010.
  1051. West, P., E. Rozell, S. Zednik, P. Fox, and D. McGuinness (2010b), Semantically Enabled Temporal Reasoning in a Virtual Observatory, paper presented at Proceedings of OWLED 2009 (October 23-24 2009), Citeseer, Westfields Conference Center, Washington, D.C., US.
  1052. Wheatland, M. S., P. A. Sturrock, and L. W. Acton (1997), Coronal Heating and the Vertical Temperature Structure of the Quiet Corona, The Astrophysical Journal, 482, 510.
  1053. White, O., G. Kopp, M. Snow, and K. Tapping (2012), The solar cycle 23–24 minimum. A benchmark in solar variability and effects in the heliosphere, Solar Physics, 1-4, doi:10.1007/s11207-010-9680-7.
  1054. White, O. R. (2000), Data From the Precision Solar Photometric Telescope (Pspt) in Hawaii From March 1998 to March 1999, SSRv, 94, 75.
  1055. Wilhelm, K., L. Abbo, F. Auchere, N. Barbey, L. Feng, A. H. Gabriel, S. Giordano, S. Imada, A. Llebaria, and W. H. Matthaeus (2011), Morphology, dynamics and plasma parameters of plumes and inter-plume regions in solar coronal holes, Astronomy and Astrophysics Review, 19(1), 1-70, doi:10.1007/s00159-011-0035-7.
  1056. Williams, P. E., and W. D. Pesnell (2011), Comparisons of Supergranule Characteristics During the Solar Minima of Cycles 22/23 and 23/24, Solar Physics, 270(1), 125-136, doi:10.1007/s11207-011-9718-5.
  1057. Willson, R. F., R. S. L, L. K. R, T. B. J, and C. Y. R. O. C. St (1998), First VLA Observations of Nonthermal Metric Bursts Associated with Coronal Mass Ejections Detected by the Solar and Heliospheric Observatory, Astrophys.Journal, 504:L117.
  1058. Wilson, D. C., and R. M. MacQueen (1974), Observed Streamer Curvature in the Outer Solar Corona, Journal Geophysical Research; 79 (31), 4575-4580.
  1059. Wilson, P. R. (1998), Is the Solar Rotation Uniform Below the Tachocline?, ESA-SP-418, Noordwijk: ESA Publications Division, 1998.
  1060. Woo, R. (1987), Coronal Structures Observed in Radio Propagation Measurements, Solar Wind Eight.
  1061. Woo, R. (1995a), Probing the Solar Corona with Radio Ranging Measurements, Astrophysics Journal Letters.
  1062. Woo, R. (1995b), Solar Wind Speed Structure in the Inner Corona at 3-12 Solar Radii, Geophysical Research Letters, 22, 1393-1396.
  1063. Woo, R. (1996a), 1985 Voyager 2 Radio Ranging Measurements of Coronal Density: Asymmetry in the Radial Profiles Explained, Astrophysical Journal, 458, L87, doi:10.1086/309922.
  1064. Woo, R. (1996b), Detection of Low-Latitude Plumes in the Outer Corona by Ulysses Radio Ranging Measurements, Astrophys.Journal, 464, L95-L98.
  1065. Woo, R. (1996c), Structure in the Solar Corona from Radio Scintillation Measurements, Astrophys.Space Science, 243, 97-104.
  1066. Woo, R. (2005), Relating White-Light coronal images to magnetic fields and plasma flow, Solar Phys., 231, 71-85, doi:10.1007/s11207-005-1580-x.
  1067. Woo, R. (2015), Perception of Solar Eclipses Captured by Art Explains How Imaging Misrepresented the Source of the Solar Wind, i-Perception, 6(6), 2041669515613710, doi:10.1177/2041669515613710.
  1068. Woo, R. (2019), Naked eye observation of the 2017 total solar eclipse: a more complete understanding of the white-light corona, Monthly Notices of the Royal Astronomical Society, 485(3), 4122-4127, doi:10.1093/mnras/stz703.
  1069. Woo, R., J. W. Armstrong, and S. R. Habbal (2000), Observed Associations between the Solar Interior, Corona, and Solar Wind, The Astrophysical Journal, 538, L171.
  1070. Woo, R., and S. R. Habbal (1997), Extension of Coronal Structure into Interplanetary Space, Geophysical Research Letters; 24 (10), 1159-1162.
  1071. Woo, R., and S. R. Habbal (1998a), Comment On: `Polar Plumes and Fine-Scale Coronal Structures --- On the Interpretation of Coronal Radio Sounding Data' by Pätzold and Bird, Geophysical Research Letters; 25 (11), 1849-1850.
  1072. Woo, R., and S. R. Habbal (1998b), Multiscale Filamentary Structures in the Solar Corona and Their Implications for the Origin and Evolution of the Solar Wind, in Physics of Space Plasmas no.15; MIT Center for Theoretical Geo/Cosmo Plasma Physics, Cambridge, MA, 351-355.
  1073. Woo, R., and S. R. Habbal (1999a), A New View of the Origin of the Solar Wind, in Solar Wind Nine, ed. S.R. Habbal, AIP.
  1074. Woo, R., and S. R. Habbal (1999b), Imprint of the Sun on the Solar Wind, Astrophys.Journal, 510, L69-L72.
  1075. Woo, R., and S. R. Habbal (1999c), Radial Evolution of Density Structure in the Solar Corona, Geophysical Research Letters, 26, 1793-1796.
  1076. Woo, R., and S. R. Habbal (2000), Connecting the Sun and the Solar Wind: Source Regions of the Fast Wind Observed in Interplanetary Space, Journal Geophyscial Research, 105, 12667-12674.
  1077. Woo, R., S. R. Habbal, R. A. Howard, and C. M. Korendyke (1999), Extension of the Polar Coronal Hole Boundary Into Interplanetary Space, Astrophys.Journal, 513.
  1078. Woo, R., H. Rifai, and Shadia (2001), Associating the Solar Wind Measured by Ulysses with its Source at the sun, Space Sci.Rev., 97, 81-85.
  1079. Woo, R., and H. Shadia Rifai (2005), Origin and Acceleration of the Slow Solar Wind, Astrophys.J.L., 629, L129-L132, doi:10.1086/447767.
  1080. Woo, R., H. Shadia Rifai, and F. Uri (2004), Role of Closed Magnetic Fields in Solar Wind Flow, The Astrophysical Journal, 612, 1171-1174.
  1081. Woods, T. N., F. G. Eparvier, R. Hock, A. R. Jones, D. Woodraska, D. Judge, L. Didkovsky, J. Lean, J. Mariska, and H. Warren (2012), Extreme ultraviolet variability experiment (EVE) on the solar dynamics observatory (SDO): Overview of science objectives, instrument design, data products, and model developments, Solar Physics, 1-29, doi:10.1007/s11207-009-9487-6.
  1082. Wu, S. T., S. Wang, M. Dryer, A. I. Poland, D. G. Sime, C. J. Wolfson, L. E. Orwig, and A. Maxwell (1983), Magnetohydrodynamic Simulation of the Coronal Transient Associated with the Solar Limb Flare of 1980, June 29, 18:21 UT, Solar Physics, 85, 351-373.
  1083. Wu, S. T., T. X. Zhang, E. Tanberg-Hanssen, L. Yang, F. Xueshang, and T. Arjun (2004), Numerical Magnetohydrodynamic experiments for testing the physical mechanisms of coronal mass ejection acceleration, Solar Phys., 225, 157-175.
  1084. Xie, H., O. C. S. Cyr, N. Gopalswamy, S. Yashiro, J. Krall, M. Kramar, and J. Davila (2009), On the Origin, 3D Structure and Dynamic Evolution of CMEs Near Solar Minimum, Solar Physics, 127, doi:10.1007/s11207-009-9422-x.
  1085. Xue, Z., X. Yan, Z. Qu, and L. Zhao (2014), Downflows-induced brightening following a filament eruption, New Astronomy, doi:10.1016/j.newast.2013.04.005.
  1086. Xueshang, W. C. F. (2008), Interplanetary Physics Research in China: 2006—2008, Chinese Journal of Space Science, 05, doi:10.11728/cjss2008.05.444.
  1087. Yang, J., Y. Jiang, Y. Bi, H. Li, J. Hong, D. Yang, R. Zheng, and B. Yang (2012a), An Over-and-out Halo Coronal Mass Ejection Driven by the Full Eruption of a Kinked Filament, The Astrophysical Journal, 749(1 id:12), 8, doi:10.1088/0004-637x/749/1/12.
  1088. Yang, J., Y. Jiang, B. Yang, R. Zheng, D. Yang, J. Hong, H. Li, and Y. Bi (2012b), The Asymmetrical Eruption of a Quiescent Filament and Associated Halo CME, Solar Physics, 1-12, doi:10.1007/s11207-012-0002-0.
  1089. Yang, J., Y. Jiang, R. Zheng, Y. Bi, J. Hong, and B. Yang (2012c), Sympathetic Filament Eruptions from a Bipolar Helmet Streamer in the Sun, The Astrophysical Journal, 745(1), 7, doi:10.1088/0004-637x/745/1/9.
  1090. Yang, J., Y. Jiang, R. Zheng, J. Hong, Y. Bi, and L. Yang (2011a), Quadrupolar Dimmings During a Partial Halo Coronal Mass Ejection Event, Solar Physics, 1-9, doi:10.1007/s11207-011-9762-1.
  1091. Yang, L., X. Feng, C. Xiang, S. Zhang, and S. T. Wu (2011b), Simulation of the unusual solar minimum with 3D SIP-CESE MHD model by comparison with multi-satellite observations, Solar Physics, 1-20, doi:10.1007/s11207-011-9785-7.
  1092. Yang, L. H., Y. C. Jiang, and D. B. Ren (2008), Formation of Transient Coronal Holes during the Eruption of a Quiescent Filament and its Overlying Sigmoid, Chin.J.Astron.Astrophys.Vol, 8(3), 329-336.
  1093. Yang, L. P., X. S. Feng, C. Q. Xiang, Y. Liu, X. Zhao, and S. T. Wu (2012d), Time-dependent MHD modeling of the global solar corona for year 2007: Driven by daily-updated magnetic field synoptic data, Journal of Geophysical Research, 117(A8), A08110, doi:10.1029/2011ja017494.
  1094. Yang, Z., C. Bethge, H. Tian, S. Tomczyk, R. Morton, G. Del Zanna, S. W. McIntosh, B. B. Karak, S. Gibson, and T. Samanta (2020a), Global maps of the magnetic field in the solar corona, Science, 369(6504), 694-697, doi:10.1126/science.abb4462.
  1095. Yang, Z., H. Tian, S. Tomczyk, R. Morton, X. Bai, T. Samanta, and Y. Chen (2020b), Mapping the magnetic field in the solar corona through magnetoseismology, Science China Technological Sciences, 1-12, doi:10.1007/s11431-020-1706-9.
  1096. Yasukawa, E. (1982), The Mauna Loa Solar Observatory Automatic Dome Rotator System, NCAR Technical Note, TN-198+STR.
  1097. Yokoyama, T., Y. Katsukawa, and M. Shimojo (2019), Observations of photospheric magnetic structure below a dark filament using the Hinode Spectro-Polarimeter, Publications of the Astronomical Society of Japan, 71(2), doi:10.1093/pasj/psz014.
  1098. Yousef, S., M. M. El-Nazer, and A. Bebars (2005), The Successive Ejection of Several Halo CMEs from NOAA AR. 652 July 2004, a Physical Study, Coronal and Stellar Mass Ejections, 226, doi:10.1017/s1743921305000414.
  1099. Yu, S., B. Chen, K. K. Reeves, D. E. Gary, S. Musset, G. D. Fleishman, G. M. Nita, and L. Glesener (2020), Magnetic Reconnection during the Post-impulsive Phase of a Long-duration Solar Flare: Bidirectional Outflows as a Cause of Microwave and X-Ray Bursts, The Astrophysical Journal, 900(1), 17, doi:10.3847/1538-4357/aba8a6.
  1100. Yuan, D. (2013), Compressive magnetohydrodynamic waves in the solar atmosphere, University of Warwick.
  1101. Zagainova, I. S., and V. Fainshtein (2014), How do fast impulse CMEs related to powerful flares but unrelated to eruptive filaments appear and move?, Advances in Space Research, 55(3), 882-834, doi:10.1016/j.asr.2014.05.032.
  1102. Zahariev, N. I., and T. M. Mishonov (2011), Heating of the Solar Corona by Alfven Waves: Self-Induced Opacity, Arxiv preprint arXiv:1103.2233, doi:10.1063/1.3598101.
  1103. Zangrilli, L., and G. Poletto (2012), A SOHO/UVCS study of coronal outflows at the edge of an active region complex, A&A, 545, 10, doi:10.1051/0004-6361/201219452.
  1104. Zednik, S., P. Fox, D. L. McGuinness, P. P. Da Silva, and C. Chang (2009), Semantic Provenance for Science Data Products: Application to Image Data Processing, paper presented at Proceedings of the First International Workshop on the role of Semantic Web in Provenance Management, Citeseer, 2009.
  1105. Zhang, J., M. W. Liemohn, J. U. Kozyra, M. F. Thomsen, H. A. Elliott, and J. M. Weygand (2006), A statistical comparison of solar wind sources of moderate and intense geomagnetic storms at solar minimum and maximum, J.Geophys.Rev., 111, A01104, doi:10.1029/2005ja011065.
  1106. Zhang, M. (2014), Diagnosing coronal evolution using Stokes signals, paper presented at 40th COSPAR Scientific Assembly. Held 2-10 August 2014, in Moscow, Russia, Abstract E2. 1-12-14.
  1107. Zhang, P., É. Buchlin, and J.-C. Vial (2019), Launch of a CME-associated eruptive prominence as observed with IRIS and ancillary instruments, Astronomy & Astrophysics, 624, A72, doi:10.1051/0004-6361/201834259.
  1108. Zhang, Y. Z., R. Kitai, N. Narukage, T. Matsumoto, S. Ueno, K. Shibata, and J. X. Wang (2011), Propagation of Moreton Waves, Publications of the Astronomical Society of Japan, 63(3), 685, doi:10.1093/pasj/63.3.685.
  1109. Zhao, M. Y., Y. Liu, T. F. Song, X. F. Zhang, M. Hagino, and T. Sakurai (2018), Image enhancement for the observation of the solar corona, paper presented at SPIE Astronomical Telescopes + Instrumentation, SPIE.
  1110. Zhao, X. P., and A. J. Hundhausen (1981), Organization of Solar Wind Plasma Properties in a Tilted, Heliomagnetic Coordinate System, Journal of Geophysical Research, 86 (A7), 5423-5430.
  1111. Zhao, X. P., and A. J. Hundhausen (1983), Spatial Structure of Solar Wind in 1976, Journal of Geophysical Research, 88 (A1), 451-454.
  1112. Zhukov, A. N. (2010), EIT wave observations and modeling in the STEREO era, Journal of Atmospheric and Solar-Terrestrial Physics, doi:10.1016/j.jastp.2010.11.030.
  1113. Zidowitz, S., B. Inhester, and A. Epple (1996), Tomographic Inversion of Coronagraph Images, in Solar Wind Eight, eds. D. Winterhalter, J. Gosling, S.R. Habbal, W. Kurth, and M. Neugebauer, AIP, 165-168.
  1114. Zong, W., and Y. Dai (2015), Coronal and Chromospheric Signatures of Large-scale Disturbances Associated with a Major Solar Eruption, The Astrophysical Journal, 809(2), 151, doi:10.1088/0004-637x/809/2/151.
  1115. Zuccarello, F., L. Balmaceda, G. Cessateur, H. Cremades, S. L. Guglielmino, J. Lilensten, T. D. de Wit, M. Kretzschmar, F. M. Lopez, and M. Mierla (2013), Solar activity and its evolution across the corona: recent advances, Journal of Space Weather and Space Climate, 3, A18, doi:10.1051/swsc/2013039.
  1116. Zurbuchen, T. H. (2007), A new view of the coupling of the Sun and the heliosphere, Annu. Rev. Astron. Astrophys., 45, 297-338, doi:10.1146/annurev.astro.45.010807.154030.

Abstracts

  1. Bak-Steslicka, U., S. Gibson, and Y. Fan (2014), LOS velocity as a tracer of coronal cavity magnetic structure, paper presented at 40th COSPAR Scientific Assembly. Held 2-10 August 2014, in Moscow, Russia, Abstract E2. 1-11-14.
  2. Burkepile, J., A. Boll, R. Casini, G. de Toma, D. Elmore, K. Gibson, P. Judge, A. Mitchell, M. Penn, and S. Sewell (2017), Polarization Observations of the Total Solar Eclipse of August 21, 2017, paper presented at AGU Fall Meeting Abstracts.
  3. Burkepile, J., G. de Toma, M. Galloy, D. Kolinski, B. Berkey, A. Stueben, S. Tomczyk, A. De Wijn, R. Casini, and G. Card (2016), What's New at the Mauna Loa Solar Observatory, paper presented at AAS/Solar Physics Division Meeting.
  4. Burkepile, J., M. D. Galloy, G. de Toma, O. C. St Cyr, W. T. Thompson, A. Posner, and I. G. Richardson (2019), Ground-Based Coronagraph Observations as an early warning system for Solar Energetic Particle Events, in AGU Fall Meeting Abstracts, edited, pp. SH23C-3360.
  5. Burnett, L. W., D. W. Nychka, S. E. Gibson, and K. Dalmasse (2015), Three-Dimensional Reconstruction of the Electron Density in the Solar Corona, AGU Fall Meeting Abstracts, 53.
  6. Byrne, J., H. Morgan, P. Gallagher, S. Habbal, and J. Davies (2015), The new CORIMP CME catalog & 3D reconstructions, paper presented at EGU General Assembly Conference Abstracts.
  7. Chen, B., S. Yu, S. Musset, D. E. Gary, G. D. Fleishman, L. Glesener, K. Reeves, and G. M. Nita (2019), Fast plasma outflows associated with impulsive microwave and hard X-ray bursts during the gradual phase of the 2017 September 10 X8.2 flare, in American Astronomical Society Meeting Abstracts #234, edited, p. 216.201.
  8. Chen, Y., H. Tian, Y. Su, Z. Qu, L. Deng, P. R. Jibben, Z. Yang, J. Zhang, T. Samanta, and J. He (2018), Diagnosing the magnetic field structure of a coronal cavity observed during the 2017 total solar eclipse, The Astrophysical Journal, 856(1), 21, doi:10.1093/pasj/psz084.
  9. Cho, K. (2014), Relationship between Metric Type II Solar Radio Bursts and Coronal Mass Ejections, paper presented at 40th COSPAR Scientific Assembly. Held 2-10 August 2014, in Moscow, Russia, Abstract D2. 5-53-14.
  10. De Pontieu, B. (2013), Observational evidence for Alfven waves in the solar atmosphere, paper presented at AGU Fall Meeting Abstracts.
  11. de Toma, G., S. Gibson, and K. Dalmasse (2019), Linear Polarization Observations of Coronal Pseudostreamers, in Solar Heliospheric and INterplanetary Environment (SHINE 2019), edited, p. 27.
  12. De Toma, G., S. Gibson, K. Dalmasse, and M. P. Miralles (2018), Pseudostreamer topology revealed by CoMP observations, 42nd COSPAR Scientific Assembly, 42, E2. 3-33-18.
  13. DuPont, M., C. Shen, and N. A. Murphy (2020), Comparative Analysis of the Solar Wind: Modeling Charge State Distributions in the Heliosphere, arXiv preprint arXiv:2012.12297.
  14. Fan, S., J. He, L. Yan, L. Zhang, and S. Tomczyk (2014), Turbulence and Heating in the Side and Wake Regions of Coronal Mass Ejection in the Low Corona, paper presented at AGU Fall Meeting Abstracts.
  15. Fang, C., P. Chen, Y.-h. Tang, Q. Hao, and Y. Guo (2014), Automatic Detect and Trace of Solar Filaments, paper presented at 40th COSPAR Scientific Assembly. Held 2-10 August 2014, in Moscow, Russia, Abstract E2. 4-28-14.
  16. Galloy, M. D., J. Burkepile, G. de Toma, O. St Cyr, W. Thompson, and A. Posner (2019), Using a Ground-Based Coronagraph as an early warning system for Solar Energetic Particle Events, shin, 142.
  17. Gibson, S., U. Bak-Steslicka, G. de Toma, L. A. Rachmeler, and M. Zhang (2016), CoMP linear polarization as a probe of coronal magnetic topology, in AAS/Solar Physics Division Meeting, edited.
  18. Gibson, S., A. Malanushenko, G. de Toma, S. Tomczyk, K. Reeves, H. Tian, Z. Yang, B. Chen, G. Fleishman, and D. Gary (2020), Untangling the global coronal magnetic field with multiwavelength observations, arXiv preprint arXiv:2012.09992,� Helio2050 White Paper.
  19. Gibson, S., S. Tomczyk, J. Burkepile, R. Casini, E. DeLuca, G. de Toma, A. de Wijn, Y. Fan, L. Golub, and P. Judge (2019), Coronal Solar Magnetism Observatory Science Objectives, AGUFM, 2019, SH11C-3395.
  20. Gibson, S. E. (2015), Magnetism Matters: Coronal Magnetometry Using Multi-Wavelength Polarimetry, IAU General Assembly, 22, 30393.
  21. Goryaev, F., V. Slemzin, and D. Rodkin (2020), Observations of Ray-Like Structures in Large-Scale Coronal Dimmings Produced by Limb CMEs, arXiv preprint arXiv:2003.11326.
  22. Gurman, J. B., F. Hill, F. Suàrez-Solà, R. Bogart, A. Amezcua, P. Martens, J. Hourclé, K. Hughitt, and A. Davey (2012), The Virtual Solar Observatory: What Are We Up To Now?, paper presented at American Astronomical Society Meeting Abstracts.
  23. Jibben, P. R., and K. Reeves (2015), Observations of a Coronal Cavity and Prominence with Hinode, IRIS, and AIA, paper presented at AAS/AGU Triennial Earth-Sun Summit.
  24. Jibben, P. R., K. Reeves, and Y. Su (2016), Hinode and IRIS Observations of a Prominence-Cavity System, in AAS/Solar Physics Division Meeting, edited.
  25. Jones, S. I., C. N. Arge, V. M. Uritsky, C. J. Henney, J. M. Davila, and J. H. Staeben (2019), Coronal Magnetic Field Model Selection Using Images of the Middle Corona and Solar Wind Measurements, AGUFM, 2019, SH13A-08.
  26. Jones, S. I., J. M. Davila, and V. Uritsky (2016), Optimizing global coronal magnetic field models using image-based constraints, The Astrophysical Journal, 820(2), 113.
  27. Karna, N., A. Savcheva, S. Gibson, and S. V. Tassev (2017), Non Linear Force Free Field Modeling for a Pseudostreamer, paper presented at AAS/Solar Physics Division Meeting.
  28. Knoelker, M. (2015), Back To The Future with Coronascope II, paper presented at HAO 75th Anniversary Celebration, NCAR/HAO - Boulder, CO, 2015.
  29. Kramar, M., and H. Lin (2019), Retrieving 3D coronal magnetic field from ground and space based spectropolarimetric observations, paper presented at American Astronomical Society Meeting Abstracts.
  30. Kramar, M., H. Lin, and S. Tomczyk (2014), 3D Coronal Magnetic Field Reconstruction Based on Infrared Polarimetric Observations, paper presented at AGU Fall Meeting Abstracts.
  31. Kramar, M., H. Lin, and S. Tomczyk (2015), 3D Observation of the Global Coronal Magnetic Field by Vector Tomography using the Coronal Emission Linear Polarization Data, IAU General Assembly, 22, 57404.
  32. Lee, J.-O., and K.-S. Cho (2019), Coronal electron density distributions from simultaneous observations of solar corona with MK4, LASCO-C2, and SECCHI-COR1 Coronagraphs during the period from March 2007 to June 2007, paper presented at Geophysical Research Abstracts.
  33. Lee, J.-O., K.-S. Cho, J.-Y. Lee, K.-S. Lee, S. Jang, R. Kim, and Y.-J. Moon (2017), Comparison of coronal electron density distributions from MLSO/MK4, STEREO/SECCHI-COR1, SOHO/LASCO-C2, and SOHO/UVCS, paper presented at AAS/Solar Physics Division Meeting.
  34. Long, D., and D. Perez-Suarez (2015), The effects of restricted``EIT wave''propagation on the low solar corona, IAU General Assembly, 22, 55047.
  35. Mason, E., S. Antiochos, and N. Viall (2020), Magnetic Origins of Cool Plasma in the Sun's Corona, paper presented at American Astronomical Society Meeting Abstracts# 236.
  36. Miralles, M. P. (2013), Determining the Coronal Origins of the Solar Wind Using Remote Sensing and In Situ Observations, paper presented at American Geophysical Union, Meeting of the Americas 2013, abstract# SH31B-03.
  37. Monaghan, A., P. Bryans, B. Berkey, and Y. Rivera (2019), Novel Measurements of Solar Corona during the July 2 2019 Total Eclipse over Chile, paper presented at AGU Fall Meeting 2019, AGU.
  38. Nimmo, K., M. Rempel, F. Chen, S. Gibson, and Y. Fan (2017), Numerical MHD Coronal Simulations: Energy Statistics and FORWARD Analysis, paper presented at AGU Fall Meeting Abstracts.
  39. Pant, V., N. Magyar, T. Van Doorsselaere, and R. Morton (2018), Variation of Doppler velocity with non-thermal line width in a gravitationally stratified plasma, Catalyzing Solar Connections, 70.
  40. Pasachoff, J. M., D. B. Seaton, and A. C. Sterling (2016), Early Evaluation of the Corona at the 2016 March 9 Total Solar Eclipse, paper presented at AAS/Solar Physics Division Meeting.
  41. Peck, C., M. Rast, S. Criscuoli, H. Uitenbroek, and M. D. Rempel (2016), Interpreting Irradiance Distributions Using High-Resolution 3D MHD Simulations, paper presented at AAS/Solar Physics Division Meeting.
  42. Plowman, J. E., G. de Toma, and S. Tomczyk (2015), The CoMP Instrument and Data Processing, paper presented at AAS/AGU Triennial Earth-Sun Summit.
  43. Rast, M., and C. Peck (2015), Sensitivity of Long-term Photometric Trends to Center-to-Limb Profile Variations, IAU General Assembly, 22, 57070.
  44. Rast, M. P., N. Bello Gonz�lez, Y. Katsukawa, M. D. Kazachenko, E. Khomenko, L. A. Rachmeler, M. Rempel, W. Schmidt, T. E. Berger, and S. J. Bradshaw (2020), Critical Science Plan for the Daniel K. Inouye Solar Telescope (DKIST), arXiv:2008.08203, 635(63B).
  45. Reeves, K., and P. Jibben (2014), Hinode, SDO AIA, and CoMP Observations of a Coronal Cavity with a Hot Core, paper presented at AGU Fall Meeting Abstracts.
  46. Richardson, I. G., O. C. St Cyr, B. J. Thompson, J. Burkepile, and H. V. Cane (2019), Coronal Mass Ejections Observed by the Mauna Loa Solar Observatory Coronagraphs and Their Association with Solar Energetic Particle Events - A Progress Report, in AGU Fall Meeting Abstracts, edited, pp. SH21B-05.
  47. Roberts, H. (2015), Construction of a Ca II Core-to-Wing Ratio Image, AGU Fall Meeting Abstracts, 23.
  48. St. Cyr, O., Q. Flint, C. Quirk, J. Burkepile, D. Webb, and A. Lecinski (2013), The CME Rate over Four Solar Cycles: Filling the Final Gap with MLSO MK3 Observations [1989-1996], paper presented at AGU Fall Meeting Abstracts.
  49. St. Cyr, O., Q. Flint, H. Xie, D. Webb, J. Burkepile, and A. Lecinski (2014), Properties of Mlso MK3 White-Light CMEs from 1989-1996, paper presented at AGU Fall Meeting Abstracts.
  50. Suresh, A., M. Dikpati, J. Burkepile, and G. de Toma (2013), Simulating Cyclic Evolution of Coronal Magnetic Fields using a Potential Field Source Surface Model Coupled with a Dynamo Model, paper presented at AGU Fall Meeting Abstracts.
  51. Tomczyk, S., and E. Landi (2019), Upgraded Coronal Multi-channel Polarimeter (UCoMP), in Solar Heliospheric and INterplanetary Environment (SHINE 2019), edited, p. 131.
  52. Uritsky, V. (2015), Constraining Large-Scale Solar Magnetic Field Models with Optical Coronal Observations, paper presented at 2015 AGU Fall Meeting, Agu.
  53. Uritsky, V., J. Davila, S. Jones, and P. MacNeice (2017), Image-based optimization of coronal magnetic field models for improved space weather forecasting, paper presented at AGU Fall Meeting Abstracts.
  54. Uritsky, V. M., J. M. Davila, S. Jones, and J. Burkepile (2015), Reconstructing the open-field magnetic geometry of solar corona using coronagraph images, paper presented at AAS/AGU Triennial Earth-Sun Summit.
  55. Vorobyev, K., J. Ireland, and R. Connolly (2018), New developments and applications of Helioviewer Project services, Catalyzing Solar Connections, 120.
  56. Wallace, R. (2017), Three-Dimensional Potential-Field Source-Surface Modeling of the Evolution of Coronal Structures.
  57. Zhao, J., Y. Fan, and S. Gibson (2019), Measuring coronal magnetic fields associated with CMEs: UV spectropolarimetric study, in Solar Heliospheric and INterplanetary Environment (SHINE 2019), edited, p. 144.

Citations

  1. Altrock, R. C. (2012), Cycle 24 Northern-Hemisphere Solar Maximum Observed in Fe XIV, paper presented at American Astronomical Society Meeting Abstracts.
  2. Amaya, J., S. Musset, V. Andersson, A. Diercke, C. Hoöller, S. Iliev, L. Juhász, R. Kiefer, R. Lasagni, and S. Lejosne (2014), The PAC2MAN mission: a new tool to understand and predict solar energetic events, Journal of Space Weather and Space Climate, 5, 16pp, doi:10.1051/swsc/2015005.
  3. Ando, H., D. Shiota, T. Imamura, M. Tokumaru, A. Asai, H. Isobe, M. Päzold, B. Häusler, and M. Nakamura (2015), Internal structure of a coronal mass ejection revealed by Akatsuki radio occultation observations, Journal of Geophysical Research (Space Physics), 120, 5318-5328, doi:10.1002/2015ja021076.
  4. Antolin, P., I. De Moortel, T. Van Doorsselaere, and T. Yokoyama (2017), Observational Signatures of Transverse Magnetohydrodynamic Waves and Associated Dynamic Instabilities in Coronal Flux Tubes, The Astrophysical Journal, 836(2), 219, doi:10.3847/1538-4357/aa5eb2.
  5. Antonucci, E., L. Harra, R. Susino, and D. Telloni (2020), Observations of the Solar Corona from Space, Space Science Reviews, 216(8), 117, doi:10.1007/s11214-020-00743-1.
  6. Arregui, I. (2015), Wave heating of the solar atmosphere, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 373(2042), 20140261, doi:10.1098/rsta.2014.0261.
  7. Arregui, I., and M. Goossens (2019), No unique solution to the seismological problem of standing kink magnetohydrodynamic waves, Astronomy & Astrophysics, 622, A44, doi:10.1051/0004-6361/201833813.
  8. Arregui, I., A. A. Ramos, and D. Pascoe (2013), Determination of transverse density structuring from propagating magnetohydrodynamic waves in the solar atmosphere, The Astrophysical Journal Letters, 769(2), L34.
  9. Aschwanden, M. J. (2019), New Millennium Solar Physics, edited, Springer Nature, Switzerland, doi:10.1007/978-3-030-13956-8.
  10. Ashamari, O., R. Qahwaji, S. Ipson, M. Scholl, O. Nibouche, and M. Haberreiter (2015), Identification of photospheric activity features from SOHO/MDI data using the ASAP tool, Journal of Space Weather and Space Climate, 5(A15), 15pp, doi:10.1051/swsc/2015013.
  11. Babu, A. (2014), Coronal Mass Ejections from the Sun-Propagation and Near Earth Effects, Phd Thesis.
  12. Bahari, K. (2018), Spatial Damping of Kink MHD Waves in the Presence of Magnetic Twist and Plasma Flow, The Astrophysical Journal, 864(1), 2, doi:10.3847/1538-4357/aad45f.
  13. Barbey, N., C. Guennou, and F. Auchère (2013), TomograPy: A Fast, Instrument-Independent, Solar Tomography Software, Solar Physics, 283, 227-245.
  14. Barlyaeva, T., P. Lamy, and A. Llebaria (2015), Mid-Term Quasi-Periodicities and Solar Cycle Variation of the White-Light Corona from 18.5 Years (1996.0–2014.5) of LASCO Observations, Solar Physics, 290(7), 2117-2142, doi:10.1007/s11207-015-0736-6.
  15. Barnes, D., J. Davies, R. Harrison, J. Byrne, C. Perry, V. Bothmer, J. Eastwood, P. Gallagher, E. Kilpua, and C. Möstl (2019), CMEs in the Heliosphere: II. A Statistical Analysis of the Kinematic Properties Derived from Single-Spacecraft Geometrical Modelling Techniques Applied to CMEs Detected in the Heliosphere from 2007 to 2017 by STEREO/HI-1, Solar Physics, 294(5), 57, doi:10.1007/s11207-019-1444-4.
  16. Barnes, D., J. Davies, R. Harrison, J. Byrne, C. Perry, V. Bothmer, J. Eastwood, P. Gallagher, E. Kilpua, and C. Möstl (2020a), CMEs in the Heliosphere: III. A Statistical Analysis of the Kinematic Properties Derived from Stereoscopic Geometrical Modelling Techniques Applied to CMEs Detected in the Heliosphere from 2008 to 2014 by STEREO/HI-1, arXiv preprint arXiv:2006.14879.
  17. Barnes, W. T., M. G. Bobra, S. D. Christe, N. Freij, L. A. Hayes, J. Ireland, S. Mumford, D. Perez-Suarez, D. F. Ryan, and A. Y. Shih (2020b), The sunpy project: Open source development and status of the version 1.0 core package, The Astrophysical Journal, 890(1), 68, doi:10.3847/1538-4357/ab4f7a.
  18. Ba̧k-Stȩślicka, U., S. E. Gibson, and M. Stȩślicki (2019), Thermal Properties of Coronal Cavities, Solar Physics, 294(11), 164, doi:10.1007/s11207-019-1554-z.
  19. Bemporad, A., S. Giordano, J. Raymond, and M. Knight (2015), Study of sungrazing comets with space-based coronagraphs: New possibilities offered by METIS on board Solar Orbiter, Advances in Space Research, 56(10), 2288-2297, doi:10.1016/j.asr.2015.08.037.
  20. Berger, T. (2013), Solar Prominence Fine Structure and Dynamics, Proceedings of the International Astronomical Union, 8(S300), 15-29, doi:10.1017/s1743921313010697.
  21. Bisoi, S. K., D. Chakrabarty, P. Janardhan, R. G. Rastogi, A. Yoshikawa, K. Fujiki, M. Tokumaru, and Y. Yan (2016), The prolonged southward IMF-Bz event of 2-4 May 1998: Solar, interplanetary causes and geomagnetic consequences, Journal of Geophysical Research (Space Physics), 121, 3882-3904, doi:10.1029/JA089iA07p05381.
  22. Board, S. S. (2013), Solar and Space Physics: A Science for a Technological Society, National Academies Press.
  23. Bocchialini, K., B. Grison, M. Menvielle, A. Chambodut, N. Cornilleau-Wehrlin, D. Fontaine, A. Marchaudon, M. Pick, F. Pitout, and B. Schmieder (2018), Statistical analysis of solar events associated with storm sudden commencements over one year of solar maximum during cycle 23: Propagation from the Sun to the Earth and effects, Solar Physics, 293(5), 1-62.
  24. Boteler, D. (2019), A 21st century view of the March 1989 magnetic storm, Space Weather, 17(10), 1427-1441, doi:10.1029/2019sw002278.
  25. Brandenburg, A., M. B. Ashurova, and S. Jabbari (2017), Compensating Faraday depolarization by magnetic helicity in the solar corona, The Astrophysical Journal Letters, 845(2), L15.
  26. Brun, S., I. Lopes, and P. Morel (1996), Processes of Solar Modeling.
  27. Cally, P. S. (2017), Alfvén waves in the structured solar corona, Monthly Notices of the Royal Astronomical Society, 466, 413-424, doi:10.1093/mnras/stw3215.
  28. Carrasco, V., J. Vaquero, M. Gallego, A. Muñoz-Jaramillo, G. de Toma, P. Galaviz, R. Arlt, V. S. Pavai, F. Sánchez-Bajo, and J. V. Álvarez (2019), Sunspot Characteristics at the Onset of the Maunder Minimum Based on the Observations of Hevelius, The Astrophysical Journal, 886(1), 18, doi:10.3847/1538-4357/ab4ade.
  29. Chen, H., J. Yang, Y. Duan, and K. Ji (2019), Observing Current Sheet Formation Forced by Non-radial Rotating Motion of Mini-filaments, The Astrophysical Journal, 879, doi:10.3847/1538-4357/ab24ce.
  30. Chen, S.-X., B. Li, L.-D. Xia, and H. Yu (2015), Periods and Damping Rates of Fast Sausage Oscillations in Multishelled Coronal Loops, Solar Physics, 290(8), 2231-2243, doi:10.1007/s11207-015-0751-7.
  31. Chen, Y., G. Du, L. Feng, S. Feng, X. Kong, F. Guo, B. Wang, and G. Li (2014), A Solar Type II Radio Burst from Coronal Mass Ejection-Coronal Ray Interaction: Simultaneous Radio and Extreme Ultraviolet Imaging, The Astrophysical Journal, 787(1), 59, doi:10.1088/0004-637x/787/1/59.
  32. Cheng, X., Y. Guo, and M. Ding (2017), Origin and structures of solar eruptions I: Magnetic flux rope, Science China Earth Sciences, doi:10.1007/s11430-017-9074-6.
  33. Cliver, E. W., and R. von Steiger (2017), Minimal Magnetic States of the Sun and the Solar Wind: Implications for the Origin of the Slow Solar Wind, Space Science Reviews, 210(1), 227-247, doi:10.1007/s11214-015-0224-1.
  34. Committee on a Decadal Strategy for, S., P. Space, B. Space Studies, Aeronautics, B. Space Engineering, E. Division of, and S. Physical (2012), Solar and Space Physics: A Science for a Technological Society, National Academies Press.
  35. Compagnino, A., P. Romano, and F. Zuccarello (2017), A statistical study of CME properties and of the correlation between flares and CMEs over solar cycles 23 and 24, Solar Physics, 292(1), 1-19.
  36. Cranmer, S. R. (2018), Low-frequency Alfvén waves produced by magnetic reconnection in the Sun’s Magnetic Carpet, The Astrophysical Journal, 862(1), 6.
  37. Cranmer, S. R., M. Asgari-Targhi, M. P. Miralles, J. C. Raymond, L. Strachan, H. Tian, and L. N. Woolsey (2015), The role of turbulence in coronal heating and solar wind expansion, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 373(2041), 20140148, doi:10.1098/rsta.2014.0148.
  38. Cranmer, S. R., S. E. Gibson, and P. Riley Origins of the Ambient Solar Wind: Implications for Space Weather, Space Science Reviews, 1-40, doi:10.1007/s11214-017-0416-y.
  39. Cranmer, S. R., S. E. Gibson, and P. Riley (2017), Origins of the Ambient Solar Wind: Implications for Space Weather, Space Science Reviews, 1-40, doi:10.1007/s11214-017-0416-y.
  40. Criscuoli, S., A. Norton, and T. Whitney (2017), Photometric properties of network and faculae derived from HMI data compensated for scattered light, The Astrophysical Journal, 847(2), 93, doi:10.3847/1538-4357/aa8ad7.
  41. Dalmasse, K., A. Savcheva, S. Gibson, Y. Fan, D. Nychka, N. Flyer, N. Mathews, and E. DeLuca (2019), Data-optimized Coronal Field Model. I. Proof of Concept, The Astrophysical Journal, 877(2), 111, doi:10.3847/1538-4357/ab1907.
  42. De Moortel, I., I. Falconer, and R. Stack (2020), Alfvén on heating by waves, Astronomy & Geophysics, 61(2), 2.34-32.39, doi:10.1093/astrogeo/ataa031.
  43. de Wijn, A., J. C. de la Rodríguez, G. Scharmer, G. Sliepen, and P. Sütterlin (2021), Design and Performance Analysis of a Highly Efficient Polychromatic Full Stokes Polarization Modulator for the CRISP Imaging Spectrometer, The Astronomical Journal, 161(2), 89, doi:10.3847/1538-3881/abd2b1.
  44. de Wijn, A. G., S. Tomczyk, J. Burkepile, J. O. Stenflo, Q. Qu, and M. Samopprna (2014), A Progress Update for the COronal Solar Magnetism Observatory for Coronal and Chromospheric Polarimetry, in Solar Polarization 7, edited by K. N. Nagendra, p. 323.
  45. Decraemer, B., A. N. Zhukov, and T. Van Doorsselaere (2019), Three-dimensional Density Structure of a Solar Coronal Streamer Observed by SOHO/LASCO and STEREO/COR2 in Quadrature, The Astrophysical Journal, 883(2), 152.
  46. DeForest, C., R. Howard, M. Velli, N. Viall, and A. Vourlidas (2018), The Highly Structured Outer Solar Corona, The Astrophysical Journal, 862(1), 18, doi:10.3847/1538-4357/aac8e3.
  47. Del Zanna, G., and H. E. Mason (2018), Solar UV and X-ray spectral diagnostics, Living Reviews in Solar Physics, 15, doi:10.1007/s41116-018-0015-3.
  48. DeLand, M. T., G. Kopp, and D. B. Considine (2019), Overview of the NASA Solar Irradiance Science Team (SIST) program special section, Earth and Space Science, 6(12), 2229-2231, doi:10.1029/2019ea000773.
  49. Denker, C., C. Kuckein, M. Verma, S. J. G. Manrique, A. Diercke, H. Enke, J. Klar, H. Balthasar, R. E. Louis, and E. Dineva (2018), High-cadence imaging and imaging spectroscopy at the GREGOR solar telescope—a collaborative research environment for high-resolution solar physics, The Astrophysical Journal Supplement Series, 236(1), 5.
  50. di Leoni, P. C., P. Cobelli, and P. Mininni (2015), The spatio-temporal spectrum of turbulent flows, The European Physical Journal E, 38(136), doi:10.1140/epje/i2015-15136-x.
  51. Dudík, J., G. Del Zanna, H. Mason, and E. Dzifčáková (2014), Signatures of the non-Maxwellian κ-distributions in optically thin line spectra-I. Theory and synthetic Fe IX–XIII spectra, Astronomy & Astrophysics, 570, A124, doi:10.1051/0004-6361/201424124.
  52. Dudík, J., F. Zuccarello, G. Aulanier, B. Schmieder, and P. Démoulin (2017), Expanding and contracting coronal loops as evidence of vortex flows induced by solar eruptions, The Astrophysical Journal, 844(1), 54.
  53. Ebadi, H., and M. Ghiassi (2014), Observation of kink waves and their reconnection-like origin in solar spicules, Astrophysics and Space Science, 353(1), 31-36, doi:10.1007/s10509-014-2020-x.
  54. Engvold, O., and J. B. Zirker (2019), High-Resolution Ground-Based Observations of the Sun, in The Sun as a Guide to Stellar Physics, edited, pp. 419-441, Elsevier, doi:10.1016/b978-0-12-814334-6.00015-7.
  55. Eselevich, V., M. Eselevich, V. Sadykov, and I. Zimovets (2015), Evidence of a blast shock wave formation in a “CME–streamer” interaction, Advances in Space Research, 56(12), 2793-2803, doi:10.1016/j.asr.2015.03.041.
  56. Fan, Y., S. Gibson, and S. Tomczyk (2018), The Eruption of a Prominence-carrying Coronal Flux Rope: Forward Synthesis of the Magnetic Field Strength Measurement by the COronal Solar Magnetism Observatory Large Coronagraph, The Astrophysical Journal, 866(1), 57, doi:10.3847/1538-4357/aadd0e.
  57. Faurobert, M. (2019), Solar and Stellar Variability, The Sun as a Guide to Stellar Physics, 267-299, doi:10.1016/b978-0-12-814334-6.00010-8.
  58. Feng, S., Z. Xu, F. Wang, H. Deng, Y. Yang, and K. Ji (2014), Automated Detection of Low-Contrast Solar Features Using the Phase-Congruency Algorithm, Solar Physics, 289(10), 3985-3994, doi:10.1007/s11207-014-0538-2.
  59. Filippov, B., S. Koutchmy, and N. Lefaudeux (2020), Solar Total Eclipse of 21 August 2017: Study of the Inner Corona Dynamical Events Leading to a CME, Solar Physics, 295(2), 24, doi:10.1007/s11207-020-1586-4.
  60. Filippov, B., O. Martsenyuk, Y. V. Platov, O. Den, I. Zhelyazkov, and T. Mishonov (2016), Geometry of solar coronal rays, paper presented at AIP Conference Proceedings, AIP Publishing.
  61. Filippov, B. P. (2019), Mass ejections from the solar atmosphere, Physics-Uspekhi, 62(9), 847, doi:10.3367/UFNe.2018.10.038467.
  62. Foukal, P. (2015), Dimming of the Mid-20th Century Sun, The Astrophysical Journal, 815(1), 9, doi:10.1088/0004-637x/815/1/9.
  63. Fraser, B. (2016), A brief history of solar-terrestrial physics in Australia, Geoscience Letters, 3(1), 1-11, doi:10.1186/s40562-016-0050-7.
  64. Freed, M., D. McKenzie, D. Longcope, and M. Wilburn (2016), Analysis of Flows inside Quiescent Prominences as Captured by Hinode/Solar Optical Telescope, The Astrophysical Journal, 818(1), 57, doi:10.3847/0004-637x/818/1/57.
  65. Gallagher, P. T., and D. M. Long (2011), Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves", Space Science Reviews, 158, 365-396.
  66. Gbadegesin, K., and G. Adesunloro (2016), Tracking Solar Flares Using the SuperSID Monitor, American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 15(1), 96-108.
  67. Georgoulis, M. K., A. Papaioannou, I. Sandberg, A. Anastasiadis, I. A. Daglis, R. Rodríguez-Gasén, A. Aran, B. Sanahuja, and P. Nieminen (2018), Analysis and interpretation of inner-heliospheric SEP events with the ESA Standard Radiation Environment Monitor (SREM) onboard the INTEGRAL and Rosetta Missions, Journal of Space Weather and Space Climate, 8(27).
  68. Gijsen, S. E., and T. Van Doorsselaere (2014), Resonantly damped oscillations of a system of two coronal loops, Astronomy and Astrophysics, 562, 38, doi:10.1051/0004-6361/201322755.
  69. Giordano, S., A. Ciaravella, J. Raymond, Y. K. Ko, and R. Suleiman (2013), UVCS/SOHO catalog of coronal mass ejections from 1996 to 2005: Spectroscopic proprieties, Journal of Geophysical Research: Space Physics, 118(3), 967-981, doi:10.1002/jgra.50166.
  70. Gopalswamy, N. (2016), History and development of coronal mass ejections as a key player in solar terrestrial relationship, Geoscience Letters, 3(1), 1-18.
  71. Gopalswamy, N. (2018), Extreme solar eruptions and their space weather consequences, in Extreme events in geospace, edited, pp. 37-63, Elsevier.
  72. Grigoryeva, S., I. Turova, and O. Ozhogina (2016), Studying Ca II K line profile shapes and dynamic processes in the solar chromosphere at the base of a coronal hole, Solar Physics, 291(7), 1977-2002, doi:10.1007/s11207-016-0951-9.
  73. Guglielmino, S., I. Ermolli, P. Romano, F. Zuccarello, F. Giorgi, M. Falco, R. Piazzesi, M. Stangalini, M. Murabito, and M. Ferrucci (2018), Long-term optical monitoring of the solar atmosphere in Italy, Proceedings of the International Astronomical Union, 13(S340), 251-254, doi:10.1017/S1743921318001138.
  74. Guo, M., B. Li, and T. Van Doorsselaere (2020), Kink Oscillations in Solar Coronal Loops with Elliptical Cross-Sections. I. the linear regime, arXiv e-prints, arXiv: 2010.06991.
  75. Guo, M.-Z., S.-X. Chen, B. Li, L.-D. Xia, and H. Yu (2015), Spatial damping of propagating sausage waves in coronal cylinders, Astronomy & Astrophysics, 581, A130, doi:10.1051/0004-6361/201526640.
  76. Gurman, J. B., and A. R. Davey (2004), Future Mission Data Environment: Virtualizing Access to Solar Physics Data, paper presented at SOHO 15 Coronal Heating, 2004.
  77. Hahn, M., and D. W. Savin (2014), Evidence for Wave Heating of the Quiet-Sun Corona, The Astrophysical Journal, 795(2), 111, doi:10.1088/0004-637x/795/2/111.
  78. Hanaoka, Y., J. Nakazawa, O. Ohgoe, Y. Sakai, and K. Shiota (2014), Coronal mass ejections observed at the total solar eclipse on 13 November 2012, Solar Physics, 289(7), 2587-2599.
  79. Harrison, R. A., et al. (2018), CMEs in the Heliosphere: I. A Statistical Analysis of the Observational Properties of CMEs Detected in the Heliosphere from 2007 to 2017 by STEREO/HI-1, Solar Physics, 293(5), 77, doi:10.1007/s11207-018-1297-2.
  80. Heber, B. (2013), Cosmic rays through the solar hale cycle, Space Science Reviews, 176(1-4), 265-278, doi:10.1007/s11214-011-9784-x.
  81. Hillier, A. (2018), The magnetic Rayleigh-Taylor instability in solar prominences, Reviews of Modern Plasma Physics, 2, doi:10.1007/s41614-017-0013-2.
  82. Hinrichs, J., J. A. Davies, M. J. West, V. Bothmer, B. Bourgoignie, C. J. Eyles, P. Huke, P. Jiggens, B. Nicula, and J. Tappin (2021), Analysis of signal to noise ratio in coronagraph observations of coronal mass ejections, Journal of Space Weather and Space Climate, 11, 11, doi:10.1051/swsc/2020070b.
  83. Howard, R. A., and A. Vourlidas (2018), Evolution of CME Mass in the Corona, Solar Physics, 293, doi:10.1007/s11207-018-1274-9.
  84. Howard, T. (2015a), Measuring an Eruptive Prominence at Large Distances from the Sun. I. Ionization and Early Evolution, The Astrophysical Journal, 806(2), 175, doi:10.1088/0004-637x/806/2/175.
  85. Howard, T., K. Stovall, J. Dowell, and G. Taylor (2016), MEASURING THE MAGNETIC FIELD OF CORONAL MASS EJECTIONS NEAR THE SUN USING PULSARS, The Astrophysical Journal, 831(208), 11pp, doi:10.3847/0004-637x/831/2/208.
  86. Howard, T. A. (2015b), Regarding the detectability and measurement of coronal mass ejections, Journal of Space Weather and Space Climate, 5, A22, doi:10.1051/swsc/2015024.
  87. Howson, T., I. De Moortel, P. Antolin, T. Van Doorsselaere, and A. Wright (2019), Resonant absorption in expanding coronal magnetic flux tubes with uniform density, doi:10.1051/0004-6361/201936146.
  88. Huang, C., Y. Yan, G. Li, Y. Deng, and B. Tan (2014), Tracking Back the Solar Wind to Its Photospheric Footpoints from Wind Observations–A Statistical Study, Solar Physics, 289(8), 3109-3119, doi:10.1007/s11207-014-0508-8.
  89. Hurlburt, N. (2015), Automated detection of solar eruptions, Journal of Space Weather and Space Climate, 5, A39, doi:10.1051/swsc/2015042.
  90. Jackiewicz, J., and K. S. Balasubramaniam (2013), Solar Hα Oscillations from Intensity and Doppler Observations, The Astrophysical Journal, 765(1), 15.
  91. Jackson, B., A. Buffington, J. Clover, P. Hick, H. Yu, and M. Bisi (2013), Using comet plasma tails to study solar wind, paper presented at AIP Conf. Proc.
  92. Jackson, B., H.-S. Yu, A. Buffington, and P. Hick (2014), The Dynamic Character of the Polar Solar Wind, The Astrophysical Journal, 793(1), 54, doi:10.1088/0004-637x/793/1/54.
  93. Jensen, E., R. Frazin, C. Heiles, P. Lamy, A. Llebaria, J. Anderson, M. Bisi, and R. Fallows (2016), The Comparison of Total Electron Content Between Radio and Thompson Scattering, Solar Physics, 1-21, doi:10.1007/s11207-015-0834-5.
  94. Jess, D. B., R. J. Morton, G. Verth, V. Fedun, S. D. T. Grant, and I. Giagkiozis (2015), Multiwavelength Studies of MHD Waves in the Solar Chromosphere. An Overview of Recent Results, Space Science Reviews, 190, 103-161, doi:10.1007/s11214-015-0141-3.
  95. Jull, E. I., and H. F. Gleeson (2017), Tuneable and switchable liquid crystal laser protection system, Applied Optics, 56(29), 8061-8066, doi:10.1364/ao.56.008061.
  96. Kaghashvili, E. (2012), Driven wave generated electric field in the solar corona, Journal of Geophysical Research: Space Physics (1978–2012), 117(A10).
  97. Kanoh, R., T. Shimizu, and S. Imada (2016), Hinode and IRIS observations of the magnetohydrodynamic waves propagating from the photosphere to the chromosphere in a sunspot, The Astrophysical Journal, 831(1), 24.
  98. Karampelas, K., and T. Van Doorsselaere (2020), Generating Transverse Loop Oscillations through a Steady-flow Driver, The Astrophysical Journal, 897(2), L35, doi:10.3847/2041-8213/ab9f38.
  99. Karampelas, K., and T. Van Doorsselaere (2021), Transverse Loop Oscillations via Vortex Shedding: A Self-oscillating Process, The Astrophysical Journal Letters, 908(1), L7, doi:10.3847/2041-8213/abdc2b.
  100. Karampelas, K., T. Van Doorsselaere, and P. Antolin (2017), Heating by transverse waves in simulated coronal loops, Astronomy & Astrophysics, 604, A130, doi:10.1051/0004-6361/201730598.
  101. Karampelas, K., T. Van Doorsselaere, and M. Guo (2019), Wave heating in gravitationally stratified coronal loops in the presence of resistivity and viscosity, Astronomy & Astrophysics, 623, A53, doi:10.1051/0004-6361/201834309.
  102. Karna, N., J. Zhang, W. D. Pesnell, and S. H. Webber (2015), Study of the 3D Geometric Structure and Temperature of a Coronal Cavity Using the Limb Synoptic Map Method, The Astrophysical Journal, 810(2), 124, doi:10.1088/0004-637x/810/2/124.
  103. Khan, I. A., Z. Iqbal, and G. Murtaza (2020), Solar coronal heating by Alfvén waves in bi-kappa distributed plasma, Monthly Notices of the Royal Astronomical Society, 491(2), 2403-2412.
  104. Kilpua, E., N. Lugaz, M. Mays, and M. Temmer (2019), Forecasting the structure and orientation of earthbound coronal mass ejections, Space Weather, 17(4), 498-526, doi:10.1029/2018sw001944.
  105. Kim, I., I. Alexeeva, O. Bugaenko, V. Popov, and E. Suyunova (2014), Near-Limb Zeeman and Hanle Diagnostics, Coronal Magnetometry, 288(2), 651-661, doi:10.1007/s11207-013-0419-0.
  106. Kim, I., O. Bugaenko, D. Lisin, and L. Nasonova (2015), K-corona recording in the range< 1.4 Rsun, arXiv preprint arXiv:1502.04641.
  107. Kim, I., L. Nasonova, D. Lisin, V. Popov, and N. Krusanova (2016), Imaging the Structure of the Low K‐corona, Journal of Geophysical Research: Space Physics, doi:10.1002/2016ja022623.
  108. Knipp, D. J. (2015), Celebrating Accomplishments and Anniversaries of Space Weather Observations and Forecasting, Space Weather, 13(6), 357-358, doi:10.1002/2015sw001230.
  109. Kramar, M., V. Airapetian, and H. Lin (2016), 3D global coronal density structure and associated magnetic field near solar maximum, Frontiers in Astronomy and Space Sciences, 3, 25.
  110. Kramar, M., V. Airapetian, Z. Mikić, and J. Davila (2014), 3D Coronal Density Reconstruction and Retrieving the Magnetic Field Structure during Solar Minimum, Solar Physics, 289(8), 2927-2944, doi:10.1007/s11207-014-0525-7.
  111. Kucera, A., S. Tomczyk, J. Rybak, S. Sewell, P. Gomory, P. Schwartz, J. Ambroz, and M. Kozak (2015), Dual instrument for Flare and CME onset observations-Double solar Coronagraph with Solar Chromospheric Detector and Coronal Multi-channel Polarimeter at Lomnicky stit Observatory, IAU General Assembly, 22, 46687.
  112. Kumar, M., and C. Wang (2019), Magnetic Reconnection in the Solar Corona, doi:10.31401/SunGeo.2019.01.06.
  113. Kumar, P., V. Yurchyshyn, H. Wang, and K.-S. Cho (2015), Formation and Eruption of a Small Flux Rope in the Chromosphere Observed by NST, IRIS, and SDO, The Astrophysical Journal, 809(1), 83, doi:10.1088/0004-637x/809/1/83.
  114. Laming, J. M., A. Vourlidas, C. Korendyke, D. Chua, S. R. Cranmer, Y.-K. Ko, N. Kuroda, E. Provornikova, J. C. Raymond, and N.-E. Raouafi (2019), Element abundances: a new diagnostic for the solar wind, The Astrophysical Journal, 879(2), 124, doi:10.3847/1538-4357/ab23f1.
  115. Lamy, P., T. Barlyaeva, A. Llebaria, and O. Floyd (2014), Comparing the solar minima of cycles 22/23 and 23/24: The view from LASCO white light coronal images, Journal of Geophysical Research: Space Physics, 119(1), 47-58, doi:10.1002/2013ja019468.
  116. Lamy, P. L., O. Floyd, B. Boclet, J. Wojak, H. Gilardy, and T. Barlyaeva (2019), Coronal Mass Ejections over Solar Cycles 23 and 24, Space Science Reviews, 215(5), 39, doi:10.1007/s11214-019-0605-y.
  117. Lamy, P., H. Gilardy, A. Llebaria, E. Quemerais, and F. Ernandes (2020), Coronal Photopolarimetry with the LASCO-C3 Coronagraph over 24 Years [1996-2019]--Application to the K/F Separation and to the Determination of the Electron Density, arXiv preprint arXiv:2009.04820.
  118. Langfellner, J., A. C. Birch, and L. Gizon (2016), Intensity contrast of the average supergranule, Astronomy and Astrophysics, 596, doi:10.1051/0004-6361/201629281.
  119. Laurent, G. T., et al. (2016), The Rapid Acquisition Imaging Spectrograph Experiment (RAISE) Sounding Rocket Investigation, Journal of Astronomical Instrumentation, 05(01), 1640006, doi:10.1142/s2251171716400067.
  120. Lavraud, B., Y. Liu, K. Segura, J. He, G. Qin, M. Temmer, J.-C. Vial, M. Xiong, J. Davies, and A. Rouillard (2016), A small mission concept to the sun-earth Lagrangian L5 point for innovative solar, heliospheric and space weather science, Journal of Atmospheric and Solar-Terrestrial Physics, doi:10.1016/j.jastp.2016.06.004.
  121. Lee, J. O., Y. J. Moon, J. Y. Lee, K. S. Lee, and R. S. Kim (2016), Coronal electron density distributions estimated from CMEs, DH type II radio bursts, and polarized brightness measurements, Journal of Geophysical Research: Space Physics, 121(4), 2853-2865, doi:10.1002/2015ja022321.
  122. Leenaarts, J., M. Carlsson, and L. R. van der Voort (2015), On Fibrils and Field Lines: the Nature of Hα Fibrils in the Solar Chromosphere, The Astrophysical Journal, 802(2), 136, doi:10.1088/0004-637x/802/2/136.
  123. Lemaire, J., and K. Stegen (2016), Improved Determination of the Location of the Temperature Maximum in the Corona, Solar Physics, 1-25, doi:10.1007/s11207-016-1001-3.
  124. Levens, P. J., B. Schmieder, A. López Ariste, N. Labrosse, K. Dalmasse, and B. Gelly (2016), Magnetic Field in Atypical Prominence Structures: Bubble, Tornado, and Eruption, The Astrophysical Journal, 826, doi:10.3847/0004-637x/826/2/164.
  125. Li, H., E. L. Degl’Innocenti, and Z. Qu (2017), Polarization of Coronal Forbidden Lines, The Astrophysical Journal, 838(1), 69, doi:10.3847/1538-4357/aa6625.
  126. Lin, H. (2016), mxCSM: A 100-slit, 6-wavelength wide-field coronal spectropolarimeter for the study of the dynamics and the magnetic fields of the solar corona, Frontiers in Astronomy and Space Sciences, 3, 9, doi:10.3389/fspas.2016.00009.
  127. Liu, R. (2020), Magnetic Flux Ropes in the Solar Corona: Structure and Evolution toward Eruption, doi:10.1088/1674-4527/20/10/165.
  128. Liu, W., B. De Pontieu, J.-C. Vial, M. Carlsson, H. Uitenbroek, T. J. Okamoto, T. E. Berger, and P. Antolin (2015), First High-resolution Spectroscopic Observations of an Erupting Prominence Within a Coronal Mass Ejection by the Interface Region Imaging Spectrograph (IRIS), The Astrophysical Journal, 803(2), 12, doi:10.1088/0004-637x/803/2/85.
  129. Liu, Z.-X., J.-S. He, and L.-M. Yan (2014), Observations of counter-propagating Alfvénic and compressive fluctuations in the chromosphere, Research in Astronomy and Astrophysics, 14(3), 299, doi:10.1088/1674-4527/14/3/004.
  130. Lloveras, D. G., A. M. Vásquez, F. A. Nuevo, and R. A. Frazin (2017), Comparative Study of the Three-Dimensional Thermodynamical Structure of the Inner Corona of Solar Minimum Carrington Rotations 1915 and 2081, Solar Physics, 292(10), 153, doi:10.1007/s11207-017-1179-z.
  131. Long, D. M., D. S. Bloomfield, P.-F. Chen, C. Downs, P. T. Gallagher, R. Y. Kwon, K. Vanninathan, A. M. Veronig, A. Vourlidas, and B. Vrsnak Understanding the Physical Nature of Coronal "EIT Waves", doi:10.1007/s11207-016-1030-y.
  132. Long, D. M., D. S. Bloomfield, P.-F. Chen, C. Downs, P. T. Gallagher, R. Y. Kwon, K. Vanninathan, A. M. Veronig, A. Vourlidas, and B. Vrsnak (2017), Understanding the Physical Nature of Coronal "EIT Waves", doi:10.1007/s11207-016-1030-y.
  133. Magyar, N., and T. Van Doorsselaere (2018), Assessing the Capabilities of Dynamic Coronal Seismology of Alfvénic Waves through Forward Modeling, The Astrophysical Journal, 856(2), 144.
  134. Majumdar, S., V. Pant, R. Patel, and D. Banerjee (2020), Connecting 3D Evolution of Coronal Mass Ejections to Their Source Regions, The Astrophysical Journal, 899(1), 6, doi:10.3847/1538-4357/aba1f2.
  135. Mashnich, G., and V. Bashkirtsev (2016), Motions and oscillations in a filament preceding its eruption, Astronomy Reports, 60(2), 287-293, doi:10.1134/s1063772916020086.
  136. Mason, J. P., P. C. Chamberlin, D. Seaton, J. Burkepile, D. Pesnell, B. J. Thompson, A. M. Veronig, M. J. West, D. Windt, and T. N. Woods SunCET: The Sun Coronal Ejection Tracker, Arxiv.
  137. Mathews, N. H., N. Flyer, and S. E. Gibson (2020), Reconstructing the Coronal Magnetic Field: The Role of Cross-field Currents in Solution Uniqueness, The Astrophysical Journal, 898(1), 70, doi:10.3847/1538-4357/ab9dfd.
  138. Matilsky, L. I., B. W. Hindman, and J. Toomre (2020), Revisiting the sun’s strong differential rotation along radial lines, The Astrophysical Journal, 898(2), 111, doi:10.3847/1538-4357/ab9ca0.
  139. Mazumder, R., P. Bhowmik, and D. Nandy (2018), The association of filaments, polarity inversion lines, and coronal hole properties with the sunspot cycle: An analysis of the McIntosh database, The Astrophysical Journal, 868(1), 52, doi:10.3847/1538-4357/aae68a.
  140. McIntosh, S. W., W. J. Cramer, M. Pichardo Marcano, and R. J. Leamon (2017), The detection of Rossby-like waves on the Sun, Nature Astronomy, 1, 0086, doi:10.1038/s41550-017-0086.
  141. Meftah, M., T. Corbard, A. Irbah, R. Ikhlef, F. Morand, C. Renaud, A. Hauchecorne, P. Assus, J. Borgnino, and B. Chauvineau (2014a), Ground-based measurements of the solar diameter during the rising phase of solar cycle 24, Astronomy & Astrophysics, 569, A60, doi:10.1051/0004-6361/201423598.
  142. Meftah, M., J.-F. Hochedez, A. Irbah, A. Hauchecorne, P. Boumier, T. Corbard, S. Turck-Chièze, S. Abbaki, P. Assus, and E. Bertran (2014b), PICARD SODISM, a space telescope to study the Sun from the middle ultraviolet to the near infrared, Solar Physics, 289(3), 1043-1076.
  143. Meyer, K. A., D. H. Mackay, D.-C. Talpeanu, L. A. Upton, and M. J. West (2020), Investigation of the middle corona with SWAP and a data-driven non-potential coronal magnetic field model, Solar Physics, 295(7), 1-23, doi:10.1007/s11207-020-01668-2.
  144. Michalek, G., N. Gopalswamy, and S. Yashiro (2019), On the Coronal Mass Ejection Detection Rate during Solar Cycles 23 and 24, The Astrophysical Journal, 880(1), 51.
  145. Mierla, M., J. Janssens, E. D’Huys, L. Wauters, M. J. West, D. B. Seaton, D. Berghmans, and E. Podladchikova (2020), Long-term evolution of the solar corona using PROBA2 data, Solar Physics, 295, 1-28, doi:10.1007/s11207-020-01635-x.
  146. Mikhalyaev, B., and D. Bembitov (2014), Nonlinear Resonant Excitation of Fast Sausage Waves in Current-Carrying Coronal Loops, Solar Physics, 289(11), 4069-4083, doi:10.1007/s11207-014-0566-y.
  147. Mishonov, T. M., A. M. Varonov, N. I. Zahariev, R. V. Topchiyska, B. V. Lazov, and S. B. Mladenov (2018), Magnetohydrodynamic calculation of the temperature and wind velocity profile of the solar transition region. Preliminary results, paper presented at MATEC Web of Conferences, EDP Sciences.
  148. Mohite, B. M., R. S. Vhatkar, and D. S. Burud (2015), Relation between angular width and speed of coronal mass ejections observed during 23rd solar cycle, Int. J. Curr. Res. Aca. Rev, 3(8), 113-121.
  149. Moreels, M., M. Goossens, and T. Van Doorsselaere (2013), Cross-sectional area and intensity variations of sausage modes, Astronomy & Astrophysics, 555, A75, doi:10.1051/0004-6361/201321545.
  150. Moreels, M., T. Van Doorsselaere, S. Grant, D. Jess, and M. Goossens (2015), Energy and energy flux in axisymmetric slow and fast waves, A&A, 578(A60), doi:10.1051/0004-6361/201425468.
  151. Moreels, M. G., and T. Van Doorsselaere (2013), Phase relations for seismology of photospheric flux tubes, Astronomy and Astrophysics, 551, 137.
  152. Morton, R., and J. McLaughlin (2013), Hi-C and AIA observations of transverse magnetohydrodynamic waves in active regions, Astronomy & Astrophysics, 553, L10.
  153. Mueller, D., R. G. Marsden, O. S. Cyr, and H. R. Gilbert (2013), Solar orbiter, Solar Physics, 285(1), 25-70.
  154. Mäkelä, P., N. Gopalswamy, and S. Akiyama (2018), Direction-finding Analysis of the 2012 July 6 Type II Solar Radio Burst at Low Frequencies, The Astrophysical Journal, 867, doi:10.3847/1538-4357/aae2b6.
  155. Müller, D., O. S. Cyr, I. Zouganelis, H. R. Gilbert, R. Marsden, T. Nieves-Chinchilla, E. Antonucci, F. Auchère, D. Berghmans, and T. Horbury (2020), The Solar Orbiter mission-Science overview, Astronomy & Astrophysics, 642, A1, doi:10.1051/0004-6361/202038467.
  156. Nagatsuma, T., R. Kataoka, and M. Kunitake (2015), Estimating the solar wind conditions during an extreme geomagnetic storm: a case study of the event that occurred on March 13¿ 14, 1989, Earth, Planets and Space, 67(1), 78, doi:10.1186/s40623-015-0249-4.
  157. Narock, T., and P. Fox (2015), Semantic Search in Solar-Terrestrial Sciences, The Semantic Web in Earth and Space Science. Current Status and Future Directions, 20, 127, doi:10.3233/978-1-61499-501-2-127.
  158. Navarro, A., F. Lora-Clavijo, and G. A. González (2017), Magnus: a new resistive MHD code with heat flow terms, The Astrophysical Journal, 844(1), 57, doi:10.3847/1538-4357/aa7a13.
  159. Nita, G., R. Angryk, B. Aydin, J. Banda, T. Bastian, T. Berger, V. Bindi, L. Boucheron, W. Cao, and E. Christian (2018), Roadmap for Reliable Ensemble Forecasting of the Sun-Earth System, arXiv preprint arXiv:1810.08728.
  160. Ofman, L. (2016), MHD Waves in the Solar Wind, Low-Frequency Waves in Space Plasmas, 216(chapter 14), 243, doi:10.1002/9781119055006.ch14.
  161. Ofman, L., A. Viñas, and Y. Maneva (2014), Two‐dimensional hybrid models of H+‐He++ expanding solar wind plasma heating, Journal of Geophysical Research: Space Physics, doi:10.1002/2013ja019590.
  162. Okamoto, T. J., P. Antolin, B. De Pontieu, H. Uitenbroek, T. Van Doorsselaere, and T. Yokoyama (2015), Resonant Absorption of Transverse Oscillations and Associated Heating in a Solar Prominence. I. Observational Aspects, The Astrophysical Journal, 809(1), 71, doi:10.1088/0004-637x/809/1/71.
  163. Oran, R. (2014), Coronal Heating and Solar Wind Acceleration by Alfvén Wave Turbulence: a Global Computational Model and Observations, The University of Michigan.
  164. Pagano, P., and I. De Moortel (2019), Contribution of observed multi frequency spectrum of Alfvén waves to coronal heating, Astronomy & Astrophysics, 623, A37, doi:10.1051/0004-6361/201834158.
  165. Pant, V., A. Datta, and D. Banerjee (2015), Flows and Waves in Braided Solar Coronal Magnetic Structures, The Astrophysical Journal Letters, 801(1), L2, doi:10.1088/2041-8205/801/1/l2.
  166. Pant, V., and T. Van Doorsselaere (2020), Revisiting the relation between nonthermal line widths and transverse MHD wave amplitudes, The Astrophysical Journal, 899(1), 1, doi:10.3847/1538-4357/aba429.
  167. Pasachoff, J. M. (2018), Science at the Great American Eclipse, Astronomy & Geophysics, 59(4), 4.19-14.23, doi:10.1093/astrogeo/aty191.
  168. Pascoe, D. J. (2014), Numerical simulations for MHD coronal seismology, Research in Astronomy and Astrophysics, 14(7), 805, doi:10.1088/1674-4527/14/7/004.
  169. Patel, R., V. Pant, P. Iyer, D. Banerjee, M. Mierla, and M. J. West (2020), Automated Detection of Accelerating Solar Eruptions using Parabolic Hough Transform, arXiv preprint arXiv:2010.14786.
  170. Pillet, V. M., A. Tritschler, L. Harra, V. Andretta, A. Vourlidas, N. Raouafi, B. Alterman, L. B. Rubio, G. Cauzzi, and S. Cranmer (2020), Solar physics in the 2020s: DKIST, parker solar probe, and solar orbiter as a multi-messenger constellation, arXiv preprint arXiv:2004.08632.
  171. Pitout, F., L. Koechlin, A. L. Ariste, L. Dettwiller, and J.-M. Glorian (2020), Solar surveillance with CLIMSO: instrumentation, database and on-going developments, edited, EDP Sciences, doi:10.1051/swsc/2020039.
  172. Poduval, B. (2016), Controlling Influence of Magnetic Field on Solar Wind Outflow: An Investigation using Current Sheet Source Surface Model, Astrophys. J. Letters, 827, doi:10.3847/2041-8205/827/1/l6.
  173. Poletto, G. (2015), Solar Coronal Plumes, Living Rev. Solar Phys., 12, doi:10.1007/lrsp-2015-7.
  174. Prakash, O., L. Feng, G. Michalek, W. Gan, L. Lu, A. Shanmugaraju, and S. Umapathy (2017), Characteristics of events with metric-to-decahectometric type II radio bursts associated with CMEs and flares in relation to SEP events, Astrophysics and Space Science, 362(3), 56, doi:10.1007/s10509-017-3034-y.
  175. Priest, E. (2014a), Hinode 7: Conference summary and future suggestions, Publications of the Astronomical Society of Japan, 66(SP1), S18.
  176. Priest, E. (2014b), Magnetohydrodynamics of the Sun, Cambridge University Press.
  177. Qiang-wei, C., W. Ning, and L. Jun (2016), Observational Study on Current Sheet of Magnetic Reconnection in Two Solar Eruptions, Chinese Astronomy and Astrophysics, 40, 352-372, doi:10.1016/j.chinastron.2016.07.003.
  178. Qu, Z., H. Li, Y. Zhong, Y. Liang, Z. Song, H. Zhang, H. Zhang, Y. Chen, H. Tian, and X. Cheng (2019), COronal Magnetism and Plasma ASsembled Scopes (COMPASS), SCIENTIA SINICA Physica, Mechanica & Astronomica, 49(5), 059606, doi:10.1360/sspma2018-00304.
  179. Raouafi, N. E., et al. (2016), Solar Coronal Jets: Observations, Theory, and Modeling, Space Science Reviews, doi:10.1007/s11214-016-0260-5.
  180. Raymond, J. C., S. Giordano, and A. Ciaravella (2017), Spatial Offsets in Flare-CME Current Sheets, The Astrophysical Journal, 843, doi:10.3847/1538-4357/aa7848.
  181. Reep, J. (2013), Evidence for Impulsive Heating of Active Region Coronal Loops, Masters Thesis, Rice University. http://hdl. handle. net/1911/71685.
  182. Reeves, K. K. (2018), Hinode Observations of Flows and Heating Associated with Magnetic Reconnection During Solar Flares, paper presented at Astrophysics and Space Science Library.
  183. Reginald, N., O. S. Cyr, J. Davila, L. Rastaetter, and T. Török (2018), Evaluating Uncertainties in Coronal Electron Temperature and Radial Speed Measurements Using a Simulation of the Bastille Day Eruption, Solar Physics, 293(5), 82, doi:10.1007/s11207-018-1301-x.
  184. Reginald, N. L., J. Davila, O. C. St. Cyr, and D. M. Rabin (2017), Electron temperature maps of the low solar corona: ISCORE results from the total solar eclipse of 1 August 2008 in China, J. Geophys. Res. Space Physics, 122(6), 5856-5869, doi:10.1002/2017ja024014.
  185. Regnier, S. (2013), Magnetic Field Extrapolatinos in the Corona: Success and Future Improvements, Solar Physics, 288(2), 481-505, doi:10.1007/s11207-013-0367-8.
  186. Ren, D., Z. Han, and J. Guo (2020), A High-Efficiency and High-Accuracy Polarimeter for Solar Magnetic Field Measurements, Solar Physics, 295(8), 1-23, doi:10.1007/s11207-020-01676-2.
  187. Reva, A., A. Kirichenko, A. Ulyanov, and S. Kuzin (2017), Observations of the Coronal Mass Ejection with a Complex Acceleration Profile, The Astrophysical Journal, 851(2), 108, doi:10.3847/1538-4357/aa9986.
  188. Riedl, J. M., T. Van Doorsselaere, and I. C. Santamaria (2019), Wave modes excited by photospheric p-modes and mode conversion in a multi-loop system, Astronomy & Astrophysics, 625, A144.
  189. Rivera, Y. J., E. Landi, and S. T. Lepri (2019), Identifying Spectral Lines to Study Coronal Mass Ejection Evolution in the Lower Corona, The Astrophysical Journal Supplement Series, 243(2), 34, doi:10.3847/1538-4365/ab2bfe.
  190. Rouillard, A., R. Pinto, A. Brun, C. Briand, S. Bourdarie, T. D. De Wit, T. Amari, P. Blelly, E. Buchlin, and A. Chambodut (2016), Space-weather assets developed by the French space-physics community, paper presented at SF2A-2016: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics.
  191. Rouillard, A., R. Pinto, A. Vourlidas, A. de Groof, W. Thompson, A. Bemporad, S. Dolei, M. Indurain, E. Buchlin, and C. Sasso (2020), Models and data analysis tools for the Solar Orbiter mission, Astronomy and Astrophysics-A&A, doi:10.1051/0004-6361/201935305.
  192. Routh, S., Z. E. Musielak, and R. Hammer (2013), Global and local cutoff frequencies for transverse waves propagating along solar magnetic flux tubes, The Astrophysical Journal, 763(1), 44.
  193. Rudawy, P., K. Radziszewski, A. Berlicki, K. Phillips, D. Jess, P. Keys, and F. Keenan (2019), A Search for High-Frequency Coronal Brightness Variations in the 21 August 2017 Total Solar Eclipse, Solar Physics, 294(4), 1-15, doi:10.1007/s11207-019-1428-4.
  194. Ruderman, M. S., E. Pelinovsky, N. S. Petrukhin, and T. Talipova (2013), Non-reflective Propagation of Kink Waves in Coronal Magnetic Loops, Solar Physics, 1-10.
  195. Rušin, V. (2017), The Flattening Index of the Eclipse White-Light Corona and Magnetic Fields, Solar Physics, 292(1), 24, doi:10.1007/s11207-016-1046-3.
  196. Salasa, R. P., and A. M. Arymurthy (2019), Solar Filament Detection using Mask R-CNN, paper presented at 2019 International Workshop on Big Data and Information Security (IWBIS), IEEE.
  197. Sarkar, R., N. Srivastava, M. Mierla, M. J. West, and E. D’Huys (2019), Evolution of the Coronal Cavity From the Quiescent to Eruptive Phase Associated with Coronal Mass Ejection, The Astrophysical Journal, 875(2), 101, doi:10.3847/1538-4357/ab11c5.
  198. Schmieder, B. (2018), Extreme solar storms based on solar magnetic field, Journal of Atmospheric and Solar-Terrestrial Physics, 180, 46-51, doi:10.1016/j.jastp.2017.07.018.
  199. Schrijver, C. J., L. Fletcher, L. van Driel-Gesztelyi, A. Asai, P. S. Cally, P. Charbonneau, S. E. Gibson, D. Gomez, S. S. Hasan, and A. M. Veronig (2015a), IAU commission 10 Solar Activity: Legacy report and triennial report for 2012-2015, paper presented at Proc. XXVIII IAU General Assembly.
  200. Schrijver, C. J., K. Kauristie, A. D. Aylward, C. M. Denardini, S. E. Gibson, A. Glover, N. Gopalswamy, M. Grande, M. Hapgood, and D. Heynderickx (2015b), Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS, Advances in Space Research, 55(12), 2745-2807, doi:10.1016/j.asr.2015.03.023.
  201. Schwadron, N. A., et al. (2017), Particle Radiation Sources, Propagation and Interactions in Deep Space, at Earth, the Moon, Mars, and Beyond: Examples of Radiation Interactions and Effects, Space Science Reviews, doi:10.1007/s11214-017-0381-5.
  202. Seaton, D. B., A. E. Bartz, and J. M. Darnel (2017), Observations of the formation, development, and structure of a current sheet in an eruptive solar flare, The Astrophysical Journal, 835(2), 139.
  203. Shen, C., J. C. Raymond, Z. Mikić, J. A. Linker, K. K. Reeves, and N. A. Murphy (2017), Time-dependent Ionization in a Steady Flow in an MHD Model of the Solar Corona and Wind, The Astrophysical Journal, 850(1), 26, doi:10.3847/1538-4357/aa93f3.
  204. Shen, Z., A. Diercke, and C. Denker (2018), Calibration of full‐disk He i 10 830 Å filtergrams of the Chromospheric Telescope, Astronomische Nachrichten, 339(9-10), 661-671, doi:10.1002/asna.201813536.
  205. Shi, T., E. Landi, and W. Manchester (2019), Nonequilibrium ionization effects on coronal plasma diagnostics and elemental abundance measurements, paper presented at AGU Fall Meeting 2019, AGU.
  206. Shoda, M., B. D. Chandran, and S. R. Cranmer (2021), Turbulent generation of magnetic switchbacks in the Alfvenic solar wind, arXiv preprint arXiv:2101.09529.
  207. Slemzin, V., and Y. S. Shugai (2015), Identification of coronal sources of the solar wind from solar images in the EUV spectral range, Cosmic Research, 53(1), 47-58, doi:10.1134/s0010952515010074.
  208. Snik, F., J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. De Martino, D. Mawet, J. Riedi, and J. S. Tyo (2014), An overview of polarimetric sensing techniques and technology with applications to different research fields, paper presented at SPIE Sensing Technology+ Applications, International Society for Optics and Photonics.
  209. Soler, R., M. Goossens, J. Terradas, and R. Oliver (2014), The behavior of transverse waves in nonuniform solar flux tubes. II. Implications for coronal loop seismology, The Astrophysical Journal, 781(2), 111.
  210. Srivastava, A., B. Dwivedi, and M. Kumar (2013), Observations of intensity oscillations in a prominence-like cool loop system as observed by SDO/AIA: evidence of multiple harmonics of fast magnetoacoustic waves, Astrophysics and Space Science, 1-8.
  211. St. Cyr, O., B. Fleck, and J. Davila (2014), The Impact of Coronagraphs, Eos, Transactions American Geophysical Union, 95(41), 369-370.
  212. Sujito, H. Wisodo, and B. Setiahadi (2017), Comparison of Magnetohydrodynamics Simulation And Observasional Result to Solar Coronal Helmet Streamer, Journal of Physics: Conference Series, 846(Conference 1), 6, doi:https://doi.org/10.1088/1742-6596/846/1/012004.
  213. Suo, L. (2019), A Full-disk Image Standardization of the Chromosphere Observation at Huairou Solar Observing Station, Advances in Space Research, doi:10.1016/j.asr.2019.10.035.
  214. Suárez, D. O. (2019), Polarimetric Observations of the Sun, Astronomical Polarisation from the Infrared to Gamma Rays, 147.
  215. Szente, J., E. Landi, W. Manchester IV, G. Toth, B. van der Holst, and T. Gombosi (2019), SPECTRUM: Synthetic Spectral Calculations for Global Space Plasma Modeling, The Astrophysical Journal Supplement Series, 242.
  216. Takeda, Y., and S. UeNo (2017), Toward Spectroscopically Detecting the Global Latitudinal Temperature Variation on the Solar Surface, Solar Physics, 292(9), 123, doi:10.1007/s11207-017-1144-x.
  217. Team, H. R., K. Al-Janabi, P. Antolin, D. Baker, L. R. Bellot Rubio, L. Bradley, D. H. Brooks, R. Centeno, J. L. Culhane, and G. Del Zanna (2019), Achievements of Hinode in the first eleven years, Publications of the Astronomical Society of Japan, 71(5), R1, doi:10.1093/pasj/psz084.
  218. Thompson, M. J. (2014), Grand challenges in the physics of the sun and sun-like stars, Frontiers in Astronomy and Space Sciences, 1, 1.
  219. Topchiyska, R., N. Zahariev, and T. Mishonov (2013a), Heating of the Solar Corona by Alfven Waves–Self-Induced Opacity, Bulg. J. Phys, 40(1), 056-077.
  220. Topchiyska, R. V., N. I. Zahariev, and T. M. Mishonov (2013b), Heating of the Solar Corona by Alfven Waves–Self-Induced Opacity, Bulg. J. Phys, 40(1), 056-077.
  221. Van Ballegooijen, A., and M. Asgari-Targhi (2016), Heating and acceleration of the fast solar wind by Alfvén wave turbulence, The Astrophysical Journal, 821(2), 106.
  222. Van Doorsselaere, T., S. Gijsen, J. Andries, and G. Verth (2014), Energy Propagation by Transverse Waves in Multiple Flux Tube Systems Using Filling Factors, The Astrophysical Journal, 795(1), 18, doi:10.1088/0004-637x/795/1/18.
  223. Vasheghani Farahani, S. (2011), MHD wave interaction with coronal active region plasmas, University of Warwick.
  224. Verth, G., and D. B. Jess (2016), MHD wave modes resolved in fine-scale chromospheric magnetic structures, Low-Frequency Waves Space Plasma, 216, 431-448.
  225. Vial, J.-C., and M. Chane-Yook (2016), Neutral Hydrogen and Its Emission Lines in the Solar Corona, Solar Physics, 1-18, doi:10.1007/s11207-016-0995-x.
  226. Viall, N. M., and J. Borovsky, E (2020), Nine Outstanding Questions of Solar Wind Physics, doi:10.1029/2018ja026005.
  227. Vieytes, M., J. Fontenla, A. Buccino, and P. Mauas (2016), New atmospheric model of Epsilon Eridani, paper presented at AAS/Solar Physics Division Meeting.
  228. Vourlidas, A., L. Balmaceda, H. Xie, and O. S. Cyr (2020), The Coronal Mass Ejection Visibility Function of Modern Coronagraphs, The Astrophysical Journal, 900(2), 161, doi:10.3847/1538-4357/abada5.
  229. Vourlidas, A., L. A. Balmaceda, G. Stenborg, and A. Dal Lago (2017), Multi-viewpoint Coronal Mass Ejection Catalog Based on STEREO COR2 Observations, The Astrophysical Journal, 838(2), 141, doi:10.3847/1538-4357/aa67f0.
  230. Vourlidas, A., B. J. Lynch, R. A. Howard, and Y. Li (2013), How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs, Solar Physics, 284, 179-201.
  231. Vásquez, A. M. (2016), Seeing the solar corona in three dimensions, Advances in Space Research, 57(6), 1286-1293.
  232. Vásquez, A. M., R. A. Frazin, A. Vourlidas, W. B. Manchester, B. Van der Holst, R. A. Howard, and P. Lamy (2019), Tomography of the Solar Corona with the Wide-Field Imager for the Parker Solar Probe, Solar Physics, 294(6), 81, doi:10.1007/s11207-019-1471-1.
  233. Wang, B., Y. CHEN, Q. HU, C. JIANG, H. SONG, Z. WU, and H. NING (2020), A method of forced extrapolation of the global magnetic field in the solar corona, SCIENCE CHINA Technological Sciences, doi:10.1007/s11431-018-9470-y.
  234. Wang, T. (2016), Waves in Solar Coronal Loops, Washington DC American Geophysical Union Geophysical Monograph Series, 216, 395-418, doi:10.1002/9781119055006.ch23.
  235. Wang, Y., Y. Su, Z. Hong, Z. Zeng, K. Ji, P. R. Goode, W. Cao, and H. Ji (2016), HIGH RESOLUTION He i 10830 Å NARROW-BAND IMAGING OF AN M-CLASS FLARE. I. ANALYSIS OF SUNSPOT DYNAMICS DURING FLARING, The Astrophysical Journal, 833(2), 250.
  236. Warmuth, A. (2015), Large-scale Globally Propagating Coronal Waves, Living Reviews in Solar Physics, 12(1), 1-101, doi:10.12942/lrsp-2015-3.
  237. Waters, C. L. (2019), 13.4 Observations, Diagnostics and Applications, Geomagnetism, Aeronomy and Space Weather: A Journey from the Earth's Core to the Sun, 4, 195.
  238. Webb, D., R. Howard, O. S. Cyr, and A. Vourlidas (2017), Is There a CME Rate Floor? CME and Magnetic Flux Values for the Last Four Solar Cycle Minima, The Astrophysical Journal, 851(2), 142.
  239. Webb, D. F., and A. Vourlidas (2016), LASCO White-Light Observations of Eruptive Current Sheets Trailing CMEs, Solar Physics, 1-25, doi:10.1007/s11207-016-0988-9.
  240. Weberg, M. (2015), ELEMENTAL FRACTIONATION OF THE SOLAR WIND AS INDICATORS OF CORONAL SOURCE REGIONS AND PHYSICAL PROCESSES, University of Michigan.
  241. Weberg, M. J., R. J. Morton, and J. A. McLaughlin (2018), An Automated Algorithm for Identifying and Tracking Transverse Waves in Solar Images, The Astrophysical Journal, 852(1), 57, doi:10.3847/1538-4357/aa9e4a.
  242. Weberg, M. J., R. J. Morton, and J. A. McLaughlin (2020), Using Transverse Waves to Probe the Plasma Conditions at the Base of the Solar Wind, ApJ, 894(1), 79, doi:10.3847/1538-4357/ab7c59.
  243. White, R. S. (2014), Transverse waves in the solar corona, University of Warwick.
  244. Wilkinson, J. (2012), Satellite Images of the Sun, in New Eyes on the Sun, edited, pp. 153-174, Springer.
  245. Wood, S. R., K. Mussack, and J. A. Guzik (2018), Solar models with dynamic screening and early mass loss tested by helioseismic, astrophysical, and planetary constraints, Solar Physics, 293(7), 1-14, doi:10.1007/s11207-018-1334-1.
  246. Xing, C., X. Cheng, J. Qiu, Q. Hu, E. Priest, and M. Ding (2020), Quantifying the Toroidal Flux of Preexisting Flux Ropes of Coronal Mass Ejections, The Astrophysical Journal, 889(2), 125, doi:10.3847/1538-4357/ab6321.
  247. Yeo, K. (2014), Analysis and modeling of solar irradiance variationsRep.
  248. Yeo, K., N. Krivova, and S. Solanki (2014a), Solar cycle variation in solar irradiance, Space Science Reviews, 186, 1-31, doi:10.1007/s11214-014-0061-7.
  249. Yeo, K., N. Krivova, S. Solanki, and K. Glassmeier (2014b), Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations, Astronomy & Astrophysics, 570, A85, doi:10.1051/0004-6361/201423628.
  250. Yoshida, M., Y. Suematsu, R. Ishikawa, T. J. Okamoto, M. Kubo, R. Kano, N. Narukage, T. Bando, A. R. Winebarger, and K. Kobayashi (2019), High-frequency Wave Propagation Along a Spicule Observed by CLASP, The Astrophysical Journal, 887(1), 2, doi:10.3847/1538-4357/ab4ce7.
  251. Youssef, M. (2013a), On the relation between the CMEs and the solar flares, NRIAG Journal of Astronomy and Geophysics.
  252. Youssef, M. (2013b), Statistical Study of the CME-Solar Flares Associated Events, Earth, Moon, and Planets, 110(3-4), 185-195, doi:10.1007/s11038-013-9419-1.
  253. Zapiór, M., and D. Martínez-Gómez (2016), Direct Detection of the Helical Magnetic Field Geometry from 3D Reconstruction of Prominence Knot Trajectories, The Astrophysical Journal, 817(2), 123, doi:10.3847/0004-637x/817/2/123.
  254. Zena, F. (2018), Analytical Studies For Coronal Mass Ejections, Solar Flare and Radio Solar Emission During the Solar Cycle 24, Indian Journal of Natural Sciences, 9(50).
  255. Zhao, J., S. E. Gibson, S. Fineschi, R. Susino, R. Casini, H. Li, and W. Gan (2019), Simulating the Solar Corona in the Forbidden and Permitted Lines with Forward Modeling. I. Saturated and Unsaturated Hanle Regimes, The Astrophysical Journal, 883(1), 55, doi:10.3847/1538-4357/ab328b.
  256. ZHAO, X., and C. XIANG (2012), Research Progress of Solar Corona and Interplanetary Physics in China: 2010−− 2012, Space Sci, 32(5), 618-646.
  257. Zhelyazkov, I. (2014), On Modeling the Kelvin–Helmholtz Instability in Solar Atmosphere, Journal of Astrophysics and Astronomy, 36(1), 233-254, doi:10.1007/s12036-015-9332-2.
  258. Zhelyazkov, I., R. Chandra, and A. Srivastava (2016), Kelvin-Helmholtz instability in coronal mass ejections and solar surges, paper presented at American Institute of Physics Conference Series.
  259. Zhu, G., G. Lin, D. Wang, S. Liu, and X. Yang (2019), Solar Filament Recognition Based on Deep Learning, Solar Physics, 294(9), 117, doi:10.1007/s11207-019-1517-4.
  260. Zimovets, I., and V. Sadykov (2015), Spatially resolved observations of a coronal type II radio burst with multiple lanes, doi:10.1016/j.asr.2015.01.041.