Research Highlights

Research Highlights

A selection of highlights culled from publications by HAO staff.

The simulated vertical E x B drift velocity (Wi), and the changes of the vertical drift velocity due to the flares, at 300 km and12:00 LT (September 6th – September 11th, 2017)

Responses of the Thermosphere and Ionosphere System to Concurrent Solar Flares and Geomagnetic Storms

We conducted numerical simulations to examine dayside thermosphere and ionosphere responses to concurrent solar flares and a geomagnetic storm during September 6th – September 11th, 2017, as well as the interplay of flare and storm effects. We found that E-region electron density response to the flares was much smaller inside the auroral oval than it was outside the auroral oval due to an extra source of ionization by auroral particle precipitation.

Line profiles of He I and He II resonance lines are shown as a function of wavelength (and equivalent Doppler shift) and time, computed from a coronal initial state

Neutral hydrogen, helium and solar and stellar coronae

In the context of the solar atmosphere, we re-examine the role of of neutral and ionized species in dissipating the ordered energy of intermediate-mode MHD waves into heat. We solve conservation equations for the hydrodynamics and for hydrogen and helium ionization stages, along closed bundles of magnetic field.

Retrograde and prograde Rossby waves

Physics Of MHD Rossby Waves In The Sun

Evidence of the existence of hydrodynamic and MHD Rossby waves in the Sun is accumulating rapidly. We employ an MHD Rossby wave model for the Sun in simplified Cartesian geometry, with a uniform toroidal field and no differential rotation, to analyze the role of each force that contributes to Rossby wave dynamics, and compute fluid particle trajectories followed in these waves.

Altitude (50-260 km) versus MJO phase depiction of DE3 (a), UFKW (b), DW1 (c), and SW2 (d) low-latitude (±40°) zonal wind amplitudes obtained applying a composite analysis method to three hourly 1980-2017 SD/WACCM-X output

Preliminary Evidence of Madden-Julian Oscillation Effects on Ultra-Fast Tropical Waves in the Thermosphere

Over the past two decades mounting evidence demonstrated that terrestrial weather significantly influences the dynamics and mean state of the thermosphere. While important progress has been made in understanding how this coupling occurs on hourly to daily time scales, large uncertainty still exists on this effect around intraseasonal (∼30–90 days) time scales.

Emission line data from IRIS are shown in the top panel. The lower panel lists an expression for the ratio of the emission lines shown of SI and O, under a minimal number of assumptions which often exceed the number of independent data points

Some thoughts on emission-line spectroscopy

Philip Judge states that the interpretation of emission lines formed in large astrophysical plasmas such as the solar atmosphere faces many challenges. Relatively simple line-ratio estimates of physical parameters, while appealing, are heavily laden with assumptions.

Comparison of 135.6 nm emissions from the SAMI3/WACCM-X simulation for the March case (left and middle panels) and GOLD emission data (right panel) observed from geosynchronous orbit [Eastes et al., 2019]

Global Modeling of Equatorial Spread F with SAMI3/WACCM-X

We report the first results of a global ionosphere/thermosphere simulation study that self-consistently generates large-scale equatorial spread F (ESF) plasma bubbles in the post-sunset ionosphere. The coupled model comprises the ionospheric code SAMI3 and the atmosphere/thermosphere code WACCM-X.

TEC plot

Simulated trends in ionosphere-thermosphere climate due to predicted main magnetic field changes from 2015 to 2065

The strength and structure of the Earth's magnetic field is gradually changing. These changes do not only affect the difference between the geographic and magnetic pole, which we have to consider when we hike in higher latitude regions.

Sectional view of a GOLD spectroscopic imaging channel

Global-scale Measurements of the Limb and Disk (GOLD) Mission Implementation: Instrument Design and Early Flight Performance

The Global-scale Observations of the Limb and Disk (GOLD) is a NASA mission of opportunity designed to study how the Earth’s ionosphere-thermosphere system responds to geomagnetic storms, solar radiation and upward propagating tides on time scales as short as 30 minutes.

Plots of magnetic field and TSI with time

On the contribution of quiet Sun magnetism to solar irradiance variations: Constraints on quiet Sun variability and grand minimum scenarios

While the quiet Sun magnetic field shows only little variation with the solar cycle, long-term variations cannot be completely ruled out from first principles.