Research Highlights
Research Highlights
A selection of highlights culled from publications by HAO staff.

Solar Transition Region UltraViolet Explorer (STRUVE) requirements flow down to design
In this paper, Johnathan Gamaunt, Angelica Berner, Alfred de Wijn, Paul Scowen, and Robert Woodruff, aim to illustrate the flow down of requirements from the mission science objectives to design requirements while also giving an overview of the design developed from the concept study. This mission, funded by NASA, uses the Solar Transition Region UltraViolet Explorer (STRUVE) miniature satellite conceived to study the magnetic field in the solar atmosphere.

A Spectroscopic Survey of Infrared 1–4 μm Spectra in Regions of Prominent Solar Coronal Emission Lines of Fe XIII, Si X, and Si IX
Authors Aatiya Ali, Alin Razvan Paraschiv, Kevin Reardon, and Philip Judge, assert that the infrared solar spectrum contains a wealth of physical data about the Sun and is being explored using modern detectors and technology with new ground-based solar telescopes. One such instrument will be the ground-based Cryogenic Near-IR Spectro-Polarimeter of the Daniel K. Inouye Solar Telescope.

The Coronal Veil
Coronal loops, seen in solar coronal images, are believed to represent emission from magnetic flux tubes with compact cross sections. Anna Malanushenko, Matthias Rempel and others, examine the 3D structure of plasma above an active region in a radiative magnetohydrodynamic simulation to locate volume counterparts for coronal loops.

Efficient and Automated Inversions of Magnetically-Sensitive Forbidden Coronal Lines: CLEDB - The Coronal Line Emission DataBase Magnetic Field Inversion Algorithm
Alin Paraschiv and Philip Judge present CLEDB, a single point inversion algorithm for determining magnetic parameters using spectro-polarimetric measurements of emission lines formed in the solar corona.

Optimal spectral lines for measuring chromospheric magnetic fields
This paper identifies spectral lines from EUV to infrared wavelengths which are optimally suited to measuring vector magnetic fields as high as possible in the solar atmosphere.

Effects of spectral resolution on simple magnetic field diagnostics of the Mg II h & k lines
Rebecca Centeno, Matthias Rempel, Roberto Casini, and Tanausu del Pino Aleman study the effects of finite spectral resolution on the magnetic field values retrieved through the weak field approximation (WFA) from the cores of the Mg II h&k lines.

The Molecular Oxygen Density Structure of the Lower Thermosphere as Seen by GOLD and Models
This paper compares new observations from the Global-scale Observations of Limb and Disk (GOLD) mission of molecular oxygen (O2) in the lower thermosphere (130 - 200 km in altitude) to widely used models in the aeronomy community.

On the (Mis)interpretation of the Scattering Polarization Signatures In the Ca II 8542 A line Through Spectral Line Inversions
Scattering polarization tends to dominate the linear polarization signals of the Ca II 8542 A line in weakly magnetized areas, especially when the observing geometry is close to the limb. In this paper we evaluate the degree of applicability of existing non-LTE spectral line inversion codes at inferring the magnetic field vector and, particularly, its transverse component.

The effects of IMF By on the middle thermosphere during a geomagnetically “quiet” period at solar minimum
Numerical simulations using the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM) are performed to elucidate the effects of the interplanetary magnetic field (IMF) on the middle thermosphere composition during a “geomagnetically quiet” period.